Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переходы молекул типа симметричного волчка

Для молекул вследствие Ш. э. происходит расщепление вращательных уровней энергии, причём для молекул типа симметричного волчка, обладающих пост, дипольным моментом примером является молекула аммиака NH3), характерен линейный Ш. э. Для таких молекул методом ЭПР в молекулярных пучках, аналогичным методу ЯМР, могут наблюдаться переходы между подуровнями штарковского расщепления и с большой точностью определяться величины дипольных моментов.  [c.475]


Правила отбора для вращательных переходов в рассмотренном случае те же, что и правила отбора для молекул типа симметричного волчка (см. [23], стр. 443)  [c.193]

Правила отбора. Правила отбора для вращательного квантового числа при электронных переходах в молекулах типа симметричного волчка те же, что и для инфракрасных спектров, поскольку в соответствии с выражением (11,15) они определяются теми же самыми матричными элементами направляющих косинусов  [c.222]

В случае разрешенных электронных переходов в молекулах типа симметричного волчка это правило не вносит каких-либо дополнительных ограничений по сравнению с другими правилами отбора.  [c.222]

При этом должны соблюдаться также различные правила отбора, связанные со свойствами симметрии. Поскольку для молекул типа симметричного волчка мультиплетные переходы пока не наблюдались с таким разрешением, которое позволило бы провести анализ тонкой структуры, более подробное рассмотрение мультиплетной структуры здесь проводиться не будет.  [c.241]

Если молекула является симметричным волчком (или близка к нему) в силу симметрии самой молекулы и принадлежит к точечным группам Со ,, Ос , V или какой-либо.аксиальной точечной группе с осью симметрии выше второго порядка, то при переходах между двумя полносимметричными уровнями разрешены только изменения АК=0 (см. выше). Поэтому мы имеем одну серию подполос, почти того же типа, как и для параллельных инфракрасных полос (фиг. 122). В данном случае имеются лишь два отличия 1) в каждой подполосе, кроме трех ветвей Р, Я -а R, содержатся ветви О и 5 с интервалом между линиями, вдвое большим, чем в ветвях Р и(ДУ= 2, см. стр. 33)  [c.470]

Разрешенный электронный переход между невырожденными состояниями в молекуле, которая по своей симметрии относится к типу симметричного волчка, обязательно должен быть параллельного типа, а это значит, что только компонента отлична от нуля. Следовательно, все разрешенные полосы в такой системе полос должны быть параллельного типа и подчиняться правилу отбора (11,65). Если вращательные постоянные А ж В -в верхнем и нижнем электронных состояниях различаются не очень сильно, то структура полос будет такой же, как структура параллельных инфракрасных полос, подробно рассмотренных в томе II ([23], стр. 446 и след.) полоса будет иметь Р-, Q- и Л-ветви со слабым оттенением. В такой полосе каждая линия состоит из нескольких компонент с различными значениями К К =  [c.225]


Полный анализ триплет-синглетного перехода для какой-нибудь молекулы типа истинного симметричного волчка до сих пор произведен не был, хотя рассматривавшаяся выше система полос СНз представляет собой, по всей вероятности, одну из триплетных компонент перехода — (гл. V, разд. 3,6). Примеры таких переходов для почти симметричных волчков приводятся ниже.  [c.242]

Если собственный дипольный момент не ориентирован в направлении оси волчка (что возможно лишь для молекул, случайно являющихся симметричными волчками), то, кроме переходов с ДЛГ=0, возможны также переходы с ДЛ = 1, причем переходы первого типа соответствуют составляющей дипольного момента, параллельной оси волчка, переходы второго типа — составляющей, перпендикулярной оси волчка. Эго приводит, конечно, к возникновению значительно более сложного спектра. Мы не будем его рассматривать, так как до сих пор ни один такой спектр еще не был наблюден.  [c.44]

Закон распределения Максвелла — Больцмана 531, 543 Запрет пересечения частот одного и того же типа симметрии 218, 257, 342, 357 Запрещенные колебательные переходы в асимметричных волчках 353, 499 в линейных молекулах 409 в симметричных волчках 391, 44J в сферических волчках 486 Заторможенное внутреннее вращение влияние на химическое равновесие 558 доля в термодинамических функциях 368, 542, 548, 555, 558 интенсивность в инфракрасных спектрах 530  [c.601]

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]

Для молекул типа истинного симметричного волчка до сих пор не было обнаружено переходов, обусловленных магнитным дипольным излучением или кориолисовым взаимодействием.  [c.243]

Здесь кориолисово взаимодействие может вызвать появление слабых запрещенных подполос при разрешенных электронных переходах. Например, при переходе А" — А в молекуле точечной группы типа s почти симметричного волчка, для которого нормально происходят только переходы с АК = = 1, с возрастанием / становятся возможными переходы с АК = О и +2 (как на фиг. 113, б), если вблизи состояния А" находится другое состояние типа А, которое с большой интенсивностью комбинирует с нижним состоянием А.  [c.268]

Осн. колебат. полосы линейной многоатомной молекулы, соответствующие переходам из осн. колебат. состояния, могут быть двух типов параллельные ( ) полосы, соответствующие переходам с дипольным моментом перехода, направленным по оси молекулы, и перпендикулярные (i) полосы, отвечающие переходам с дипольным моментом перехода, перпендикулярным оси молекулы. Параллельная полоса состоит только из Я- и Р-ветвей, а в перпендикулярной полосе разрешена также и -ветвь (рис. 2). Спектр осн. полос поглощения молекулы типа симметричного волчка также состоит из II и 1 полос, но вращат. структура этих полос (см. ниже) более сложная -ветвь в 1 полосе также не разрешена. Разрешённые колебат. полосы обозначают V j. Интенсивность полосы Vj. зависит от квадрата производной (ddJdQji) или (da/dQ ) . Если полоса соответствует переходу из возбуждённого состояния на более высокое, то её наз. горячей.  [c.202]


К И N изменяются. Точно так же, как в случае линейных (и двухатомных) молекул, спин-орбитальное взаимодействие может вызывать смешивание состояний, значения Л которых различаются на А , так же как в случае молекул типа симметричного волчка могут смешиваться состояния, у которых значения К различаются на Д5. Например, уровень триплетного состояния с данным значением К может смешиваться с уровнями К + , Ктя.К — близко расположенного синглетного состояния. По этой причине для трин-лет-синглетного перехода правило отбора для квантового числа К имеет следующий вид  [c.242]

Как и в случае молекул типа симметричного волчка, структура полос молекул типа асимметричного волчка ири запрещенных электронных переходах, которые становятся возможными в результате электропно-колебатель-ного взаимодействия, совершенно такая же, как и при разреигепных переходах направление момента перехода и, следовательно, структура полос определяются электронно-колебательной симметрие верхнего и нижнего состояний.  [c.265]

ДОЙ из линий навстречу друг другу. Для большинства молекул типа симметричного волчка, в которых туннельный инверсионный эффект, в отличие от ЫНз, практически отсутствует, между компонентами вращательных дублетов будет происходить интенсивный спектральный обмен и линии молекул будут уширяться взаимосвязанно. Форма контура этих линий будет иметь дисперсионный вид [40] с полушириной, пропорциональной разности lm(Aif if — Лг/, г / )- в силу того что для данного типа процессов 1тЛг/, гт>0, истинная полуширина вращательных переходов мо-  [c.186]

В молекулах чисто вращательные переходы подчиняются О. п. для изменения проекции полного утл. момента (характеризуется квантовым числом К) на выделенную ось симметрии молекулы. Так, для молекул типа жёсткого симметричного волчка Д7С = 0 в поглощении. Однако центробежное искажение и эффекты колеба-тельно-вращат. взаимодействия еибронного взаимодействия) существенно ослабляют это О. п. В частности, в спектрах молекул симметрии Сз в осн. состоянии разрешаются переходы с АК = 3, 6 ит. д. (вероятность переходов с АК — 6 на 4 порядка меньше, чем переходов с АК — 3), а в вырожденных вибронных состояниях возможны и переходы с АК = 1, 2 и т. д. Для молекул типа асимметричного волчка О. п. по АК теряют смысл.  [c.487]

Правила отбора. Совершенно аналогично случаю линейных молекул и молекул, являющихся симметричным волчком, до тех нор, пока взаимодействие колебания и вращения не слин1ком велико, правила отбора для переходов между колебательными уровнями во вращательно-колебательном спектре и в чисто колебательном спектре совершенно одинаковы (табл. 55). В частности, основное состояние может комбинировать (в инфракрасном поглощении) только с колебательными состояниями типа Еа. Правило отбора для вращательного квантового числа J также обычное  [c.481]

Интересной особенностью полос HSi l и HSiBr является присутствие в спектре,-помимо ветвей с АК = 1 и О, ветвей с A, К = +2. Появление этих полос не может быть объяснено отклонением структуры молекулы от симметричного волчка, так как эти отклонения пренебрежимо малы (6 = — 0,00052 для HSi l), и даже в спектрах значительно более асимметричных молекул не имеется никаких намеков на такие ветви, которые в согласии с теорией должны иметь очень малую интенсивность. Герцберг и Верма [545] и Хоуген [574] высказали предположение, что причиной подобной аномалии является спин-орбитальное взаимодействие, или, другими словами, что наблюдаемый электронный переход является переходом типа М" — 1Л, (см. стр. 268). Однако отсутствие заметного триплетного расщепления ставит под сомнение такую интерпретацию. В качестве альтернативы можно, очевидно, рассматривать преобразование (поворот) осей (см. стр. 208).  [c.508]

Итак, мы показали, что энергетические уровни молекул можно классифицировать по типам точной симметрии, базисной симметрии и приближенной симметрии, а также по точным и приближенным квантовым числам. Наиболее полезными символами для классификации уровней являются Г (или четность), F, Frve, /, /, S, N, колебательные квантовые числа Vt и вращательные квантовые числа К, ( /) для симметричного волчка, Ка, Кс ДЛЯ асимметричного волчка и R для сферического волчка. Для определенных целей можно использовать также базисные типы симметрии Гг, Fv, Ге, Frv и Fve группы МС. Эти типы симметрии могут быть использованы для выявления смешивания уровней различными возмущениями и при определении правил отбора для электрических дипольных переходов. Среди наиболее важных правил отбора для возмущений особое место занимают правила, согласно которым ангармонические возмущения связывают уровни одинакового типа Fv, центробежное искажение и кориолисово взаимодействие связывают уровни одинакового типа Frv, а вибронное взаимодействие связывает состояния одинакового типа симметрии Fve. Получены также правила отбора по колебательным и вращательным квантовым числам. Выведены правила отбора для электрических дипольных переходов по колебательным, вращательным и электронным квантовым числам и по типам симметрии переходы, не подчиняющиеся этим правилам отбора, называются запрещен  [c.362]

В качестве примера полосы типа В сильно асимметричного волчка мы воспроизводим на фиг. 157 полученную Нильсеном [665] тонкую структуру обертона 2Vij(Aj) молекулы H.jO. На этой же фигуре приведен спектр, вычисленный при определенных значениях вращательных постоянных верхнего и нижнего состояний. В отличие от полос типа А здесь серии, соответствующие переходам, затрагивающим два наиболее высоких и два наиболее низких уровня каждой совокупности уровней с данным значением J, уже не выделяются среди остальных переходов, и поэтому структура полосы еще более сложна, чем в случае полос типа А. В качестве примеров полосы типа В молекулы, близкой к симметричному волчку, мы приводим на фиг. 158 и фиг. 159 тонкую структуру основных полос V4(6j) и Vj( s ) молекул Hj O и С.2Н4. Они хорошо соответствуют теоретическим спектрам в верхней части фиг. 156. В данном случае мы имеем в основном серию почти равноотстоящих линий, которые представляют собой неразрешенные ветви Q подполос перпендикулярной полосы. Расстояния между последовательными линиями приближенно равны 2А. В противоположность перпендикулярным полосам строго симметричных волчков (см. фиг. 128) полоса Hi на фиг. 159 имеет минимум интенсивности вблизи начала полосы, что согласуется с фиг. 156 и указывает на отклонение от  [c.508]


Схеыа вычерчена для случая, близкого к симметричному волчку, что имеет место, например, в молекуле Н СО, для которой ось совпадает с осью 7. Обозначения типов симметрии относятся также к этому случаю. В скобках приведены обозначения типов симметрш для перехода — молекуле при предположении, что ось лг есть ось а, а ось л есть ось с.  [c.511]

До сих пор предполагалось, что в возбужденном состоянии изогнутая молекула относится к типу почти симметричного волчка, т. е. что параметр асимметрии Ъ невелик. Если это не так, то мы все же можем классифицировать вращательные уровни по значению К — квантового числа, описывающего вращение вокруг оси а. Однако в этом случае удвоение -типа будет очень большим и К уже перестает быть хорошим квантовым числом. Следовательно, возможными оказываются переходы с нарушением правила отбора АК — О, 1. Так, например, из основного состояния I" = 0) возможны переходы на уровни верхнего состояния не только с = 0и = 1, но также и с = 2, 3,. ... Рассмотрев полные тины симметрии вращательных уровней, легко убедиться, что если для почти симметричного волчка возможны переходы только с АК = О или только с АК = 1, то для асимметричного волчка возможны только четные или только нечетные значения АК соответственно (а не любые значения, как это имеет место в гибридных полосах). Однако даже при большо11 асимметрии молекулы переходы с АК = = О, 1 являются все же наиболее интенсивными (разд. 3,г, у). Интенсивность быстро уменьшается с ростом АА ], тем более что при этом в одном из комбинирующих состояний квантовое число К определено совершенно строго.  [c.207]

Несмотря на то что молекула НСО в основном состоянии имеет сильно изогнутую форму, она все же достаточно близка к симметричному волчку. Присутствие интенсивных Q-ветвей в наблюдаемых полосах показывает, что они могут рассматриваться как подполосы перпендикулярных полос (ЛА 1), для которых момент перехода перпендикулярен оси молекулы. Поскольку было найдено, что линии Q-ветви связаны с переходами с нижних компонент А -дублетов (фиг. 81), момент перехода должен быть перпендикулярен плоскости молекулы. Отсюда следует, что рассматриваемый электронный переход может быть либо А" — А -, либо Ы — М"-переходом. Поскольку анали.з электронной конфигурации не оставляет сомпопий в том, что основным состоянием молекулы НСО является состояние А, логичным представляется предноложение о том, что наблюдаемый переход является переходом типа А" — А.  [c.507]

Несмотря на то что молекула HN N очень близка к симметричному волчку, Л -удвоение, характерное для симметричного волчка, ясно проявляется для уровней А" = 1 и К" = 1 как удвоение во всех ветвях подполос 2 —1 и 1—2 и как колебательный дефект между Р-, R- и Q-ветвями в подполосах 0—1 и 1—0. Знак инерционного дефекта показывает, что эта полоса является полосой типа С, т. е. что момент перехода перпендикулярен плоскости молекулы. Положительный знак и небольшая величина инерционного дефекта свидетельствуют также о плоской структуре молекулы в обоих электронных состояниях. Геометрические параметры молекулы HN N в обоих состояниях приведены в табл. 67. Присутствие только одной полосы в системе, обуслов.пенной рассматриваемым электронным переходом, находится в согласии с принципом Франка — Кондона, поскольку структура молекулы изменяется при переходе очень мало.  [c.532]

Иннес и Джиддингс [607] изучили на приборе с очень высоким разрешением слабую систему при 3700 А. Они нашли, что в спектре поглощения структура полосы очень похожа на структуру полос 3300 А, т. е. что она является полосой параллельного перехода. Однако наблюдающееся небольшое чередование интенсивности в ветвях заставляет предполагать существование, кроме главных переходов с АК = О, переходов с АК = 2. Для плоской молекулы типа почти симметричного волчка интервал 4 В — С) в (З-ветвях с АК = 2 почти такой же, как и интервал в Р- и Л-ветвях (а именно 2В) в компоненте АК = 0 но компонента АК = 2 будет иметь чередование интенсивностей в отношении 13 11 как функцию К, поскольку ось волчка является осью симметрии второго порядка. Присутствие ветвей А ЛГ = 2 может быть объяснено, если предположить, что переход является переходом триплет — синглет (Герцберг [523] см. гл. II, разд. 3,в). Наиболее вероятно, что этот триплет-синглетный переход является переходом Вз1 — A g, соответствующим переходу Дзи —при 3300 А. Предложенная интерпретация полностью подтвердилась наблюдением Дугласа и ]У1ил-тона [299] большого зеемановского расщепления системы 3700 А.  [c.558]


Смотреть страницы где упоминается термин Переходы молекул типа симметричного волчка : [c.93]    [c.202]    [c.334]    [c.353]    [c.32]    [c.293]    [c.736]    [c.739]    [c.131]    [c.351]    [c.482]    [c.512]    [c.505]    [c.508]    [c.509]    [c.557]    [c.257]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.222 , c.225 , c.229 , c.233 , c.236 ]



ПОИСК



274, 323—327 симметричный

В в молекулах типа симметричного

Волосевич

Волчков

Волчок

Волчок симметричный

Главные полосы изогпуто-линейных переходов.— Горячие полосы изогнуто-линейных переходов.— Линейно-изогнутые переходы.— Линейно-изогнутые переходы между состояниями Реннера — Теллера.— Спектры испускания.— Запрещенные переходы Молекулы типа симметричного волчка

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Молекула типа симметричного волчка

Молекулы переходы

Переходы а-, Ь-, с-типа

Симметричные волчки (молекулы)

Симметричный волчок переходы



© 2025 Mash-xxl.info Реклама на сайте