Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Карбиды стойкость

При переводе хрома в карбиды, а также при усиленном окислении самих карбидов стойкость материала против газовой коррозии в местах их образования понижается, что служит причиной местного разрушения. [736].  [c.670]

С, 1,7—2, % Сг). Ввиду большого сечения валки закаливают в, воде и затем подвергают низкому отпуску при 100—120°С. Это делают для, того, чтобы поверхность валка (на глубине до 10—15 мм) имела максимально высокую твердость (Я С 64—66), так как это наряду с другими условиями (отсутствием перегрева, равномерностью распределения карбидов и т. д.) обеспечивает высокую стойкость в работе.  [c.433]


Стойкость против абразивного износа возрастает с увеличением твердости изнашиваемого материала, но для различных материалов в разной степени (рис. 369), поэтому эффективным повышением износостойкости является поверхностная закалка или другие методы повышения поверхностной твердости (цементация, азотирование и т. д.). При одинаковой поверхностной твердости стали со структурой мартенсит -f карбиды обладают большей износостойкостью, чем стали с такой же твердостью, но не имеющие избыточных карбидов (рис. 369).  [c.503]

Для изготовления абразивных хонинговальных брусков использу-Ю1 различные искусственные абразивные материалы электрокорунд, карбид кремния (карборунд), эльбор (кубический нитрид бора) и др. Алмазные бруски дают несколько лучшие результаты. Главное их достоинство — высокая стойкость, в десятки раз превышающая стойкость абразивных брусков.  [c.228]

Коррозионная стойкость хромистых сталей зависит также от режимов термической их обработки. Наиболее распространенным видом термической обработки, обеспечивающим высокую сопротивляемость коррозии хромистых сталей, содержащих хром в количестве около 13%, является закалка с отпуском. При нагреве сталей рассматриваемого типа до высоких температур (950—1000°С) достигаются условия, при которых карбиды хрома переходят в твердый раствор. Если фиксировать это состояние быстрым охлаждением (в масле или на воздухе), то углерод удерживается в твердом растворе. Следующий за процессом закалки отпуск при низкой температуре лишь снимает напряжения закалочного происхождения, незначительно изменяя основную структуру, и таким образом общая сопротивляемость стали коррозионным разрушениям сохраняется.  [c.216]

Нитриды неметаллов — бора и кремния — отличаются исключительно высокой коррозионной стойкостью. На карбид бора не действуют при температуре кипения разбавленные и концентрированные минеральные кислоты, растворы окислителей, щелочей и др. (табл. 32). На нитрид кремния не действует серная, соляная, азотная и фосфорная кислоты, не действуют хлор и сероводород при 1000° С. Изделия из нитрида бора стойки против окисления Fia воздухе при 700° С до 60 ч, при 1000° С до 10 ч, в хлоре при 700°С до 40 ч. Концентрированная серная кислота при комнатной температуре не действует на изделия из нитрида бора в продолжение семи суток концентрированные фосфорная, плавиковая и азотная кислоты действуют очень слабо.  [c.297]


Из металлокерамических сплавов, пригодных для работы при температурах до 950° С, щироко применяются материалы на основе карбида Т1 и N1 карбида Т1 и Со карбида Т1 и Мо карбида Сг и N1. В этих сплавах металлическая составляющая является пластифицирующей добавкой, способствующей повыщению стойкости против теплового удара.  [c.229]

Стойкость аустенитной структуры зависит от растворимости С (карбидов) при изменении температуры (рис. 15.9).  [c.270]

Изделия из керамики высшей огнеупорности, получаемые из чистых тугоплавких металлов, карбидов, боридов, силицидов, сульфидов, нитридов (табл. 21.1), обладают высокой химической стойкостью против воздействия расплавленных металлов как в вакууме, так и в среде различных газов, механической прочностью при высоких температурах, стойкостью против ползучести и т. д.  [c.379]

К межкристаллитной коррозии склонны высоколегированные стали всех классов, имеющие высокое содержание хрома, вследствие выпадения под действием нагрева карбидов хрома по границам зерен, обеднения границ зерен хромом и из-за этого пониженной стойкости границ против коррозии. Опасность межкристаллитной коррозии возникает при нагреве хромоникелевых сталей аустенитного и аустенитно-ферритного классов до температур 500—850°С, при нагреве высокохромистых сталей мартенситного, мартенситно-ферритного и ферритного классов до температур свыше 950°С.  [c.126]

Легирование титаном или ниобием. Легирование аустенит-ных сплавов небольшими количествами элементов, обладающих большим сродством к углероду, чем хром, предотвращает диффузию углерода к границам зерен. Уже имеющийся здесь углерод взаимодействует с титаном или ниобием, а не с хромом. Сплавы такого рода называют стабилизированными (например, марки 321, 347, 348). Они не проявляют заметной склонности к межкристаллитной коррозии после сварки или нагрева до температур сенсибилизации. Наилучшей стойкости к межкристаллитной коррозии при нагреве сплава до температур, близких к 675 °С, достигают в результате предварительной стабилизирующей термической обработки в течение нескольких часов при 900 °С [14, 19]. Эта обработка эффективно способствует переходу имеющегося углерода в стабильные карбиды при температурах, при которых растворимость углерода в сплаве ниже, чем при обычно более высокой температуре закалки.  [c.307]

Необходимо отметить также большое сродство титана к углероду и в результате сильную способность к образованию карбидов (Ti ), малорастворимых в аустените и повышающих стойкость стали к межкристаллитной коррозии.  [c.82]

Белый слой, характеризующийся благоприятным сочетанием остаточных макронапряжений и структуры, наиболее эффективно повышает трещиностойкость стали и является весьма перспективным способом повышения стойкости стальных деталей к коррозионному растрескиванию. Сопротивление стали коррозионному растрескиванию зависит от содержания в ней углерода. Так же, как и сопротивление коррозионной усталости, максимальная стойкость к коррозионному растрескиванию наблюдается у стали с содержанием углерода 0,4-0,65 % (рис. 31). Это связано с тем, что при указанном содержании углерода количество остаточного аустенита небольшое (до 10 %) и увеличивается с ростом содержания углерода в стали. При этом уменьшается способность металла к релаксации локальных напряжений вследствие уменьшения подвижности дислокаций. В сталях, легированных хромом в количестве 12 % и более, релаксация напряжений облегчается вследствие уменьшения активности углерода, переходящего в карбиды. В результате этого, а также из-за увеличения пассивирующего действия хрома рост трещин резко замедляется.  [c.116]

Микроструктура твердого сплава оказывает существенное влияние на его износостойкость. С уменьшением размеров зерен карбидов стойкость твердых сплавов при торцовом фрезеровании возрастает. Так, стойкость особо мелкозернистого сплава ВКб-ОМ примерно в 1,5—2 раза выше, чем у среднезернистого сплава ВКб, и в 1,2— 1,7 раза выше, чем у мелкозернистого сплава ВК6М.  [c.137]

Бориды металлов представляют собой группу соединений с большей термодинамической устойчивостью, чем соответствующие карбиды. Стойкость против окисления у них также выше, чем у карбидов. Главным недостатком является то, что они не смачиваются и не связываются большинством из известных металлов и окислов. Один из способов преодоления этой трудности — использование для связывания боридов других твердых соединений, например силицидов или нитридов. Так как гидриды и силициды легче вступают во взаимодействие с металами, такая комбинация могла бы привести к расширению возможности применения боридов как материала покрытий. При выборе подходящих твердых растворов следует учитывать сходство структур боридов и других твердых соединений, а также возможных продуктов окисления. Поскольку гВа, Т1В2, СгВ 2 и МоВ устойчивы в контакте с кремнием при высоких температурах, можно применять бориды в сочетании с силицидами, которые не дают твердых растворов с бори-дами или кремнием.  [c.57]


Высокая стойкость против межкристаллитной коррозии достигается в ста-, ях этого тина применением стабилизирующего отжига (температура стабилизирующего отжига обычно около 850°С), при котором карбиды полностью выделяются из раствора и присутствуют в скоагулированном виде, а хром  [c.490]

Коррозионная стойкость стали обеспечивается содержанием более 12 % Сг, а содержание 8 % Ni стабилизирует аустенит-ную структуру и сохраняет ее при нормальных температурах(сталь 10Х18Н9Т и др.). При сварке этих сталей на режимах, обусловливающих продолжительное пребывание металла в области температур 500—800 °С, возможна потеря коррозионной стойкости металлом шва и 3. т. в. Причиной этого является образование карбидов хрома на границах зерен и обеднение приграничных участков зерен хромом. В результате металл сварного соединения становится склонным к так называемой межкристаллитной коррозии.  [c.233]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]

Напряжения, возникающие на границах зерен при образовании карбидов, способствуют уменьшению коррозионной стойкости границ зерен, но для сталей типа Х18Н9 с содержанием углерода, превышающим предел растворимости хромистых и железохромистых карбидов й аустените при температуре отпуска, играют, по-видимому, подчиненную роль.  [c.423]

В Советском Союзе распространены две марки железокремнистых сплавов (кремнистых чугунов), различающиеся содержанием кремния п углерода С15 (0,5—0,8% С, 14,5—157о 3)) и С17 (0,3—0,8% С, 1(з,0—18,0% 51). Чем больше в сплаве кремния, тем меньше должно быть углерода. Оптнма. пнюе содержание углерода соответствует эвтектическому составу для данного сплава. Благодаря большому сродству кремния к железу, углерод не дает карбидов железа. Сплав С17 применяется в тех случаях, когда требуются отливки с повышенной коррозионной стойкостью.  [c.239]

Высокохромистые чугуны приобретают коррозионную стойкость только при условии содержания хрома в твердом растворе (не считая хрома, связанного с углеродом чугуна) в количестве, достаточном для достижения устойчивости согласно правилу л/8, т. е. не менее 11,7% масс. Так как наибольшее распространение получили чугуны с 28—35% Сг и 1,0—2,2% С, значительная часть углерода чугунов связывается в карбиды, преимущественно типа СгуСз, на образование которых расходуется 10—  [c.243]

Карбиды титана но подвержены коррозии в коицо11три[)оваи-пой соляной кислоте. Еще большей коррозионной стойкостью отличаются карбиды бора, кремния и др. Бориды тугоплавких металлов обладают высокой стойкостью против окисления при высоких температурах и во многих агрессивных средах при  [c.295]

Высокий отпуск ( низкий отжиг- ). После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру сорбит, троостит, бейпит или мартенсит и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат нодвергакгг высокому отпуску при 650—680°С (несколько ниже точки Л,). При нагреве до указанных температур происходят процессы распада маргеисита и (или) бейнита, коагуляция карбидов в троостите и в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки ре , апием, холодной высадки или волочения. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига, когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инструмента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость п г-струмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения (см. рис. 118, в), высокий отпуск является единственной термической обработкой, позволяющей понизить их твердость.  [c.198]

В структуре литой быстрорежущей стали присутствует сложная эвтектика, тина ледебурит (рис. 155, а), располагающаяся но границам зерен, В результате горячей механической обработки сетка эвтектики дробится. В сильно деформированной быстрорежущей стали карбиды распределены равномерно в основной матрице (рис. 155, б), представляющей после отжига зернистый сорбитообраз-ныи перлит, В структуре деформированной и отожженной быстрорежущей стали можно различить три вида зернистых карбидов крупные обособленные первичные карбиды, более мелкие вторичные и очень мелкие эвтектоидные карбиды, входящие в основной сорбитный фон (рис. 155, б). При недостаточной проковке наблюдается карбидная ликвация, которая представляет собой участки разрушенной эвтектики, которая осталась в виде скоплений вытянутых в направлении деформации (рис. 155, д). При наличии карбидной ликвации уменьишется стойкость ннструмеггга и возрастает его хрупкость.  [c.299]


Бориды имеют высокую температуру плавления и, подобно карбидам, обладают твердостью, прочностью, химической стойкостью и высокой теплопроводностью. Эти свойства борндов позволяют получать из них изделия, обладающие высокой огнеупорностью и химической стойкостью.  [c.382]

С и 13 % Сг, обладает минимальной устойчивостью к ит-тингу и общей коррозии в 3 % растворе Na l при комнатной температуре после отпуска при 500 °С. Для аналогичной стали, содержащей 0,06 % С, тот же эффект наблюдается в результате отпуска при 650 °С [10]. В общем случае, если возможно, следует избегать отпуска сталей при температурах 450—650 С. Понижение коррозионной стойкости при отпуске, по-видимому, отчасти обусловлено превращением мартенсита, содержащего углерод внедрения. В результате образуется сетчатая структура включений карбида хрома, и обедняется хромом прилегающая металлическая фаза.  [c.302]

Хро.м не является дефицитным. металлом, поэтому хромистьге стали самые дешевые нержавеющие стали. Эти стали обладают достаточно хорошим комплексом технологических свойств. Углерод в нержавеющих сталях является нежелательным элементом, так как.связывая хром в карбиды, он гем самым обедняет твердый раствор хромом, понижая коррозионные свойства стали. Чем больше содержание хрома, тем выше коррозионная стойкость хромистых сталей. Они выпускаются трех типов  [c.96]

В машинах и аппаратах химического производства для деталей узлов трения применяют высокотвердые неметаллические материалы (силицированные и боросилицированные графиты, карбид кремния, минералокерамика), обладающие высокой износо- и коррозионной стойкостью по сравнению с другими материалами. Недостаток этих материалов - их относительная хрупкость и дороговизна.  [c.138]

Наибольшее применение в качестве износостойких покрытий для материалов триботехнического назначения получили титансодержащие покрытия, в частности нитриды и карбиды титана. Нитриды характеризуются высокой твердостью, термо- и износостойкостью они не взаимодействуют с расплавленными металлами и со многими агрессивными средами (H2SO4, НС1 и другие кислоты). Однако нитриды хрупки, имеют низкую стойкость против окисления, плохую сцеп-ляемость и высокий коэффициент теплового расширения. Карбид титана более стоек к окислению, чем нитрид, является хорошим проводником при высоких температурах, устойчив в среде азота при 2500°С, не растворяется в H I.  [c.247]

Известно, что при диффузионном хромировании средне- и высокоуглеродистой стали на ее поверхности формируется покрытие слоистого строения. В зависимости от содержания углерода в стали наружный слой состоит в основном из карбидов состава (Сг, Рг)2зСв или (Сг, Ре)7Сз переходный слой - из обогащенного углеродом аустенита и следующий слой - обезуглероженная зона. В результате встречной диффузии атомов хрома и углерода образуется непрерывный карбидный барьер, эффективно блокирующий дальнейшую диффузию газов в металлическую основу. С наличием карбидного барьера связана высокая стойкость к стати-  [c.64]

Для придания необходимых физико-механических свойств в оксидную пленку могут вводиться находящиеся в электролите нерастворимые в воде в этих условиях металлы, а также мелкодисперсные тугоплавкие соединения (карбиды, бориды, нитриды) и окислы за счет электрофоретической доставки их на анод. Образование пленок происходит в локальных объемах порядка 10 см при температуре пробойного канала 2000 К и скорости охлаждения 10 - 10 градус/с. По такому принципу формируются керамические покрытия, применяемые для повышения коррозионной и термической стойкости алюминиевых деталей. Керамические покрытия пол чают из водных растворов силикатов щелочных металлов, например из 3-4-модульного силиката натрия (концентрация 0,1-0,2 М), они представляют собой шпинели AlSiOj, сформированные при анодировании в режиме искрового разряда (напряжение 350 В). Дегидратация и спекание силикатов на аноде происходят в результате искрового пробоя окисного слоя, образующегося при анодировании алюминия. При электролизе на аноде происходит разряд гидроксил-ионов I. силикатных мицелл, а также образуются окислы  [c.124]


Смотреть страницы где упоминается термин Карбиды стойкость : [c.285]    [c.290]    [c.311]    [c.407]    [c.489]    [c.493]    [c.423]    [c.139]    [c.210]    [c.214]    [c.233]    [c.277]    [c.297]    [c.246]    [c.280]    [c.281]    [c.283]    [c.291]    [c.310]    [c.86]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.567 ]



ПОИСК



Карбиды

Колотыркин, в. М. Княжева свойства карбидных фаз и коррозионная стойкость нержавеющих сталей Физические свойства карбидов переходных металлов

Электрохимические свойства некоторых карбидов переходных металлов и коррозионная стойкость нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте