Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вырождение вращательных уровней

Для классификации вращательных уровней молекул типа сферического волчка в первом возбужденном состоянии трижды вырожденного колебания удобно ввести квантовое число/ ) (см., напрпмер, [58]). В соответствии с представлениями  [c.332]

Расстояния между вращательными уровнями АЕг для более легких молекул при комнатной температуре сравнимы с величиной кТ, для тяжелых молекул АЕг< кТ. Кратность вырождения их растет с увеличением энергии. Поэтому населенность вращательных уровней сначала растет с увеличением Er, а затем быстро убывает.  [c.12]


Для молекулярных электронных полос (см. 4.9.4) силы осцилляторов также могут быть определены для каждой полосы с учетом того, что вращательные уровни являются вырожденными состояниями колебательных уровней.  [c.514]

Теллер [836] и Джонстон и Деннисон [476] показали, что вследствие кориолисова взаимодействия, рассмотренного выше, вращательные уровни энергии симметричного волчка, находящегося в колебательном состоянии, в котором однократно возбуждено одно вырожденное колебание V,-, будут описываться не формулой (4,41), а формулой  [c.431]

Фиг. 117. Вращательные уровни энергии симметричного волчка в дважды вырожденном колебательном состоянии при С,->0. Фиг. 117. Вращательные уровни энергии <a href="/info/40149">симметричного волчка</a> в дважды <a href="/info/333876">вырожденном колебательном</a> состоянии при С,->0.
Если инверсионным удвоением нельзя пренебречь, тогда требуется специальное рассмотрение свойств симметрии. Мы опять разберем только случай молекулы типа XYg, принадлежащей к точечной группе Св. (подобной, например, молекуле NHg). Ранее (стр. 240) было показано, что колебательная собственная функция более низкой составляющей инверсионного дублета остается неизменной, тогда как собственная функция более высокой составляющей меняет при инверсии знак. Комбинируя это свойство с положительной и отрицательной (-)-, —) симметрией вращательных уровней сплющенного симметричного волчка (фиг. 8,6), мы получаем четность вращательных уровней для полносимметричного вырожденного колебательного уровня, как показано слева для каждого уровня на фиг. 120. Теперь необходимо учесть, что каждая колебательная собственная функция является суммой или разностью собственных функций левой и правой форм, и поэтому колебательные уровни можно классифицировать в соответствии с типами симметрии точечной группы D3 (потенциальное поле имеет симметрию точечной группы Ддд). Легко заметить, что положительные колебательные подуровни невырожденного колебательного состояния принадлежат к колебательному типу симметрии Ац отрицательные — к типу симметрии А . Комбинируя эти типы симметрии с типами симметрии вращательных уровней для полносимметричного колебательного уровня (фиг. 118,а), мы получим полную симметрию (без учета ядерного спина), указанную на фиг. 120,а справа от каждого уровня. Таким же образом получается полная симметрия для вырожденного колебательного уровня на фиг. 120,6. При равенстве нулю спина одинаковых ядер будут иметься только вращательные уровни Aj. В случае полносимметричного колебательного уровня отсюда следует, как и ранее, что встречаются только уровни с О, 3, 6,. ..  [c.441]


Для вырожденного колебательного состояния следует различать уровни -[-/и —/ в зависимости от того, имеют ли колебательный и вращательный моменты количества движения одинаковый или противоположный знак (см. фиг. 117). Теллер [836] показал, что при переходе из верхнего вырожденного колебательного состояния в нижнее невырожденное состояние только уровни -f-/ комбинируют с вращательными уровнями невырожденного состояния при aK = -j- 1 гг только уровни — I комбинируют с этими вращательными уровнями при Д/Г = —1. Обратная картина имеет место, когда вырожденное состояние является нижним (и если мы определим обычным образом Д/С как К — К")- Из фиг. 118 легко видеть, что это правило находится в соответствии с правилом, согласно которому между собой могут комбинировать только вращательные уровни одного и того же типа симметрии. Для перехода между двумя вырожденными состояниями мы, вообще говоря (см. стр. 291), имеем параллельную и перпендикулярную составляющие (Д/С=0 и АК = 1 соответственно). Для первой нз их справедливо условие ——1<—> — I, для второй имеем —/- —при ДАТ = -1-1 и  [c.445]

В случае перпендикулярных полос молекул, имеющих ось симметрии порядка выше второго, когда верхнее или нижнее состояния (или то и другое) являются вырожденными колебательными состояниями, постоянная С,- колебательного момента количества движения входит в формулу для серии ветвей Q (ср. 4,60), и поэтому мы не можем непосредственно определить разность А — В. Коэфициент при в формуле для ветвей попрежнему дает (Л — В )— А" — В"), коэфициент же при линейном члене дает 2 (Л —Л С,- — В ). Для нахождения А и Л" необходимо знать не только В и В", но также и С,-. В данном случае комбинационные разности не могут принести никакой пользы, так как соответствующие линии PQ и уже не имеют общего верхнего состояния (см. фиг. 118), и поэтому комбинационные разности не позволяют полностью разделить верхний и нижний вращательные уровни. Вместо (4,65) и (4,66) из (4,60) мы получаем (верхнее состояние вырождено)  [c.464]

Для невырожденных колебательных уровней это выражение дает очень хорошее приближение однако для вырожденных колебаний необходимо ввести дополнительные члены, характеризуюш ие взаимодействие, связанное с силами Кориолиса (см. ниже). Сравнивая (4,77) с (4,6), мы видим, что вращательные уровни невырожденных колебательных состояний сферического волчка очень схожи с соответствующими вращательными уровнями линейных молекул. Различие состоит в том, что в данном случае статистический вес равен не (27+ 1), а (27+ 1) .  [c.475]

В тетраэдрических молекулах имеется три типа вырожденных колебательных уровней — Е, р1 и Основные частоты молекул и ХУ принадлежат только к двум из них, а именно к Е н Р (см. стр. 159). Рассматривая колебания, изображенные на фиг. 41, нетрудно заметить, что при возбуждении одной составляющей дважды вырожденного колебания 7.2 силы Кориолиса не могут возбудить вторую составляющую. Следовательно, для дважды вырожденных колебательных состояний расщепление Кориолиса отсутствует, а, их вращательные уровни энергии совпадают с вращательными уровнями невырожденных колебательных состояний [см. (4,77)].  [c.475]

Фиг. 137. Вращательные уровни энергии сферического волчка в трижды вырожденном (К) и полносимметричном (Ат) колебательных состояниях. Фиг. 137. Вращательные уровни энергии <a href="/info/322389">сферического волчка</a> в трижды вырожденном (К) и полносимметричном (Ат) колебательных состояниях.
Симметрия -f, — 27, 38, 63, 278, 400, 434 Симметрия колебания 96, 115, 127 Симметрия по отношению к ядрам, вращательные уровни 27, 32, 64, 400, 411 Синильная кислота, см. H N и D N Случайно вырожденные колебания 117 Случайное вырождение 111, 142, 229, 234 (глава И, 5в)  [c.623]

Центробежное растяжение здесь не учтено. На фиг. 32 схематически показаны вращательные уровни в вырожденном колебательном уровне с = = E i i = 0,4. На фиг. 33 показана зависимость энергии от значения UT при данном значении J для трех величин С г- Следует заметить, что при большом  [c.87]


Эти выводы сразу же следуют из сказанного выше (стр. 28) относительно молекул такого типа. Нужно заметить, что в этом случае абсолютное значение статистического песа не равно удвоенному выражению (2 У 4-1) (-+ ) (2/у + 1) , как на первый взгляд можно было бы ожидать вследствие двукратного вырождения вращательных уровней (/ — ядерныи спин атома X, /у —ядерный спин атома Y). В случае /у = О появляется только симметричная составляюп ,ая каждого вырожденного уровня и ес абсолютный вес равен (2У + 1) (2 + ) ПР результирующий спин, обусловлен-  [c.29]

В спектре газа полоса V4 имеет более тесную вращательную структуру, нежели полоса Vg. Расстояния между линиями, отличающимися на единицу /, составляет здесь 5.7 см против 9.9 см полосе Vg. Особенностью колебания V4 молекулы метана является сильное кориолисово взаимодействие с близким по частоте дважды вырожденным колебанием v. , а также взаимодействие трижды вырожденных уровней между собой (постоянные кориолисова взаимодействия С4=0.45 и Сд=0.05). Обусловленное кориолисовым взаимодействием возмущение системы вращательных уровней состояния 0001 приводит к расщеплению уровней и их смещению к меньшим энергиям Это создает благоприятные условия для перекрывания уровней в результате уширения, что качественно объясняет меньшую ширину полосы V4 по сравнению с полосой Vg. Предположение о сужении полосы V4 за счет кориолисова взаимодействия было выдвинуто ранее Джонсом и Шеппардом [ ], которые исследовали спектры растворов метана в I4 и Sn l4 при комнатной температуре.  [c.226]

Выражение (2 7 [ 1) если не учитывать постоянный множитель, определяемый ядерным спином (см. стр. 39), представляет полный статистичзский вес только в случае молекулы, случайно являющейся сферическим волчком, или молекулы, у которой спины одинаковых ядер очень велики. Сложнее обстоит дело для молекулы, являющейся сферическим волчком в силу своей симметрии и имеющей малые спины одинаковых ядер добавочный множитель, на который следует умножить (2 7- -1)-кратноэ пространственное вырождение для получения полного статистического веса, не будет равен просто (2 74-1), умноженному на множитель, зависящий от спина ядра. Как будет более подробно показано в гл. IV, в случае тетраэдрических молекул (точечная группа Т ,), таких как СН4, СО , СС1,, Р , получаются три типа симметрии вращательных уровней, называемых А, Е я Г, которые аналогичны симметричным (я) и антисимметричным а) уровням линейных симметричных молекул и уровням А и Е молекул с осью симметрии третьего порядка. Оказывается, что за исключением самых низких вращательных уровней все три типа уровней возникают при данном значении 7 ). Число подуровней каждого типа меняется по  [c.52]

Разберем теперь влияние ядерного спина и статистики. Сначала мы рассмотрим случай, когда в неплоской молекуле типа XY3, принадлежащей к точечной группе Сз , ядра У имеют спин, равный нулю (аналогичное рассмотрение будет применимо к любым молекулам с симметрией если все одинаковые ядра имеют спин, равный нулю). Поворот молекулы на 120° вокруг оси волчка эквивалентен двум последовательным перестановкам двух пар одинаковых ядер. Поэтому полная собственная функция должна оставаться неизменной, независимо от того, применяется ли к одинаковым ядрам статистика Бозе или статистика Ферми, следовательно, все уровни энергии, показанные на фиг. 118, собственные функции которых не остаются неизменными при таком повороте, должны отсутствовать. При равенстве нулю ядерного спина одинаковых атомов появляются только уровни, имеющие полную симметрию Л иначе говоря, для невырожденных колебательных состояний имеются только уровни с /(=3q, для вырожденных колебательных состояний — только половина уровней с К=Ъд 1. Для плоской молекулы типа ХУд, кроме того, поворот вокруг одной из осей симметрии второго порядка эквивалентен перестановке двух одинаковых ядер. Поэтому, применяя статистику Бозе к двум одинаковым ядрам со спинами, равными нулю, мы получаем только уровни типа симметрии А , изображенные на фиг. 118, так как только для них при подобном повороте, т. е. при перестановке ядер, собственные функции остаются неизменными. Если справедлива статистика Ферми, то появляются только уровни Л, (см. фиг. 118), так как по отношению к перестановке одинаковых ядер собственная функция должна быть антисимметричной. Однако в действительности нет ядер с нулевым спином, подчиняющихся статистике Ферми, так что осуществляется только первый случай. Так, например, в случае молекул, подобных SO3, СОз , — если они принадлежат к точечной группе что очень вероятно, — для невырожденных колебательных состояний имеются только вращательные уровни с /С = О, 3, 6, 9... (при К —О — только уровни с четными У), тогда как для вырожденных колебательных состояний имеются только вращательные уровни с А = 1, 2, 4, 5, 7, 8..., для которых, в свою очередь, при каждом значении J наблюдается только один подзфовень (см. фиг. 118).  [c.438]

Снова нужно рассмотреть возмущения типа Ферми и Кориолиса, каждое из которых может вызвать колебательные или вращательные возмущения. Взаимодействовать могут только уровни с одинаковой полной симметрией, с одинаковыми числами J и с ААГ=0, 1. За исключением отличия в типах симметрии, рассуждения совершенно аналогичны нашим прежним рассуждениям для случаев линейных молекул. Однако нужно учитывать, 410 вращательные уровни Е не могуг быть расщеплены каким бы то ни было взаимодействием врап1ения и колебания (см. Вильсон [934]). В отличие от действия сил Кориолиса, рассмотренного выше, которое приводит к расщеплению вырожденных колебательных уровней при увеличении числа К и является эффектом первого порядка, кориолисовы возмущения, рассматриваемые нами сейчас, являются эффектами второго и более высоких порядков, так как они обусловлены взаимодействием двух различных колебаний в результате наличия сил Кориолиса. Как и для линейных молекул, в данном случае этот эффект обычно весьма мал. Для молекул, принадлежащих к точечной группе Сщ, из правила Яна, приведенного ранее (стр. 404), сразу вытекает, что возможны кориолисовы возмущения между колебательными уровнями Ai и Е, А-, и Е, Ai я А , Е и Е. Для первых двух пар уровней возмущение должно возрастать с увеличением числа J, для последних двух пар оно должно возрастать с увеличением числа К. До сих пор ни один из подобных случаев не изучался подробно. Частным случаем таких возмущений является удвоение типа К, рассмотренное выше, т. е. расщепление уровня с данным J и при условии, что типы полной симметрии двух составляющих уровней являются  [c.443]


Переходы между невырожденным и вырожденным колебательными уровнями перпендикулярные полосы. Для молекулы, являющейся симметричным волчком в силу своей симметрии, перпендикулярные полосы (Мг = 0) возникают только в результате переходов между колебательными состояниями, из которых, по крайней мере, одно вырожденное (см. табл. 55). Сначала мы рассмотрим случай, когда верхнее состояние является вырожденным, а нижнее— невырожденным (это, например, имеет место для основных частот вырожденных колебаний). Такая полоса, разумеется, весьма напоминает перпендикулярную полосу, рассмотренную ранее (см. фиг. 128). Расщепление вырожденного колебательного уровня вследствие сил Кориолиса (фиг. 118) не приводит к расп1еплению линий полосы (подполос), так как при ДЛ ==4 1 с нижним невырожденным состоянием комбинируют только уровни )-1, а при —1—только уровни —I (согласно правилу о том, что между собой комбинируют только вращательные уровни с одинаковой по.нюй симметрией, а также согласно правилу отбора для уровне - -1 и —/).  [c.457]

Для вращательных уровней типа Л мы должны взять спиновые функции типа Л, общее число которых равно пяти для вращательных уровней типа Е нужно взять одну единственную спиновую функцию типа Е, так как только в этом случае полная собственная функция будет принадлежать к типу Л наконец, для вращательных уровней типа Р следует взять спиновые функции типа Р, число которых равно трем. Так как Е Е дает две функции типа Л, а Л X Л н Р Р только по одной, то отсюда следует, что статистические веса враща-гельных уровней А, Е и Р равны 5, 2 и 3 соответственно. С помощью этих, значений можно получить общий статистический вес для каждого значения У. Для колебательного состояния с симметрией Л (Л, или Ло) они ужо были приведены в табл. 7. Для других колебательных состояний их легко найти при помощи фигур 138,5 и 138,6. Так, например, при 7=4 три подуровня 4 ,4 и 4 имеют статистические веса (не учитывая обычный множитель 2/- - 1, связанный с пространственным вырождением) (5 - - 2 X 3)= 11, (5- -2- - 2 X 3)= 13. и (2- -ЗХЗ)=11 соответственно. Такие статистические веса получаются, в частности, для молекул СН4 и 51Н4. При /(У) = 1 симметрия спиновой функции, согласно Вильсону [933], будет 15 Л- -6 18/- и, следовательно, стати стические веса вращательных уровней А, Е и Р равны 15, 12 и 18 соответственно. В результате мы получаем полные статистические веса, приведен-  [c.479]

Кориолисово расщепление вращательных уровней. Мы видели выше, что каждый вращательный уровень с заданным значением J состоит из ряда подуровней (всего из I подуровней). В том приближении, в котором справедливы формулы (4,77) и (4,78), эти подуровни совпадают друг с другом. Однако если принять во внимание более тонкие взаимодействия вращения и колебания, то происходит расщепление по причинам, аналогичным причинам, вызывающим /-удвоение уровней в линейных молекулах (см. стр. 406). Однако расщепление может произойти лишь на такое число уровней, со слегка отличной друг от друга энергией, которое равно числу различных яиний на фиг. 138. Дважды вырожденные вращательные подуровни типа Е и трижды вырожденные вращательные подуровни типа F не расщепляются на две или соответственно три компоненты, так как все рассматриваемые более тонкие взаимодействия имеют тетраэдрическую симметрию. Этот тип вырождения мог бы быть снят только внешним полем.  [c.480]

Статистические суммы 531 внутренние 532 в приближении гармонического осциллятора и жесткого ротатора 539, 540 вращательные 533, 535 колебательные 533, 534 молеку.т с внутренним вращением 540 постоянные равновесич химических реакций, выраженные через статистические суммы 556 поступательные 532 Статистический вес влияние инверсионного удвоения 442, 495 внутренний и полный 532 вращательных уровней асимметричных волчков 67 линейных молекул 28, 400 симметричных волчков 38, 439 сферических волчков 51, 474, 477 полный, включая ядерный спин для несимметричных молекул 28, 39, 539 Степень вырождения 93, 94, 118 Степень деполяризации комбинационного рассеяния 264, 291 релеевского рассеяния 266, 291 способы, позволяющие отличать полносимметричные и неполносимметричные комбинационные линии 269, 292, 521, 522  [c.623]

Е, вращательные уровни вырождение в любом приближенин 437, 442 молекулы с внутренним вращением 522 молекул с осью симметрии третьего порядка 39, 434 тетраэдрических молекул 52, 477, 478  [c.633]

Вращательные уровни в электронных состояниях 41, А,. ... В электронных состояниях А,. .. имеется электронный opбитaльнJ,lй момент количества движения А (см. стр. 20), а следовательно, и двойное электронное вырождение. Это вырождение снимается нри вращении молекулы точно так же, как при Л-удвоении в двухатомных молекулах, и но тем же причинам (см. [22], 226, русский перевод стр. 167). Л-Удвоепие в электронных состояниях П по-прежнему описывается уравнением (1,79), но константа ])асщепления д теперь приближенно выражается следующим образом  [c.75]

Вращательные уровни в электронных состояниях П. В электронных состояниях П электронный орбитальный момент количества движения А всегда дает магнитный момент, направленный вдоль межъядерной оси. Поэтому, по крайней мере при достаточно малом вращении, спин связан с осью (случай а по Гунду). Разрыв связи происходит в более высоких вращательных уровнях. Пока не возбуждены вырожденные колебания, вращательные уровни при любой степени разрыва связи описываются теми же самыми формулами, которые Хилл и Ван-Флек вывели для двухатомных молекул, а именно  [c.77]

Вращательные уровни для невырожденных колебательных уровней невырожденных синглетных электронных состояний. Простейшие случаи вращательных уровней молекул типа симметричного волчка в невырожденных синглетных электронных состояниях нами подробно уже рассматривались [23], а поэтому здесь можно ог])аничигься лишь подведением итогов. Вращательные термы вытянутого волчка при отсутствии колебательных (или электронных) вырождений описываются следующим выражением  [c.85]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]


Смотреть страницы где упоминается термин Вырождение вращательных уровней : [c.438]    [c.599]    [c.621]    [c.188]    [c.226]    [c.227]    [c.28]    [c.39]    [c.400]    [c.435]    [c.440]    [c.482]    [c.526]    [c.538]    [c.600]    [c.603]    [c.612]    [c.615]    [c.624]    [c.631]    [c.631]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.36 ]



ПОИСК



Вращательная структура электронных вырожденных электронно-колебательных уровней

Вращательные уровни

Вырождение

Вырождение уровня

Вырожденные колебательные состояния вращательные уровни энергии

Вырожденные уровни

Газ вырожденный

Кориолисово расщепление вырожденных вращательных уровне

Невырожденные колебательные состоянии. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Возмущения Инфракрасный спектр

Невырожденные колебательные состояния. Вырожденные колебательные состояния. Свойства симметрии вращательных уровней. Инверсионное удвоение. Кориолисово расщепление вращательных уровней Инфракрасный спектр

Расщепление вырожденных вращательных уровней симметричных волчков, асимметричных

Свойства симметрии вращательных уровней.— Тонкая структура невырожденных электронно-колебательных состояний,— Тонкая структура в вырожденных электронно-колебательных состояниях Молекулы тина асимметричного волчка

Симметричные волчки) вращательные уровни энергии в невырожденном и вырожденном колебательных состояниях



© 2025 Mash-xxl.info Реклама на сайте