Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вырожденные полупроводники

Диод туннельный — диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению при прямом напряжении на характеристике участка, соответствующего отрицательному дифференциальному сопротивлению применяется в устройствах СВЧ и быстродействующих импульсных устройствах [З].  [c.143]

Для полностью вырожденного полупроводника из (7.135) с уче-том (7.133) и (7.145) получаем  [c.246]

Фотоэмиссия из полупроводников, в полупроводниках ФЭ может быть обусловлена возбуждением электронов из валентной зоны, с уровней примесей, дефектов, поверхностных состояний и из зоны проводимости (в вырожденных полупроводниках п-типа). Для каждого из этих случаев пороговая частота имеет свое значение. Обычно, если иное не оговорено, под фотоэлектрической работой выхода понимают минимальную энергию фотонов, при которой начинается ФЭ из валентной зоны полупроводника (табл. 25.15). Это значение, как правило, превосходит работу выхода. Спектральная зависимость квантового выхода ФЭ вблизи порога в полупроводниках имеет вид  [c.575]


Физические свойства германия приведены в табл. 8-3. Удельная проводимость германия с различной концентрацией мышьяка зависит от температуры. Из рис. 8-17 видны области температур, в которых проявляются собственная и примесная составляющие электропроводности германия. Кроме того, видно, что при большом содержании примесей (кривая 6) имеем вырожденный полупроводник.  [c.254]

Рис. 6.7. Изменение концентрации электронов в зоне проводимости с температурой для полупроводников, содержащих различное количество донорной примеси (а) уровень примеси в запрещенной зоне (б) образование примесной зоны из примесного уровня при высокой концентрации примеси (в) перекрытие примесной зоны и зоны- проводимости в вырожденных полупроводниках (г) Рис. 6.7. Изменение <a href="/info/18045">концентрации электронов</a> в <a href="/info/16457">зоне проводимости</a> с температурой для полупроводников, содержащих различное количество донорной примеси (а) уровень примеси в запрещенной зоне (б) образование примесной зоны из примесного уровня при высокой концентрации примеси (в) перекрытие примесной зоны и зоны- проводимости в вырожденных полупроводниках (г)
Из рис. 7.9 видно, что с увеличением концентрации примеси угол наклона участка примесной проводимости уменьшается, что полностью согласуется с кривыми рис. 6.7, а для концентрации носителей. У вырожденных полупроводников, у которых концентрация носителей заряда почти не зависит от температуры, угол наклона этого участка определяется зависимостью подвижности от темпера-туры.  [c.193]

При выводе формулы (9.28) мы учитывали лишь скорость направленного движения электронов (дрейфовую скорость). Это естественно, так как хаотическое тепловое движение носителей-заряда не мол<ет привести к их направленному перемещению в магнитном поле. Кроме того, мы молчаливо допускали, что все носители в проводнике обладают одной и той же дрейфовой скоростью. Такое допущение может быть оправдано для металлов и вырожденных полупроводников, в которых ток переносится электронами, практически обладающими одной и той же энергией (фермиев-ской), и совершенно не применимо к невырожденным полупроводникам, в которых носители, имеющие различную энергию, могут обладать и различной скоростью дрейфа из-за зависимости их подвижности от скорости теплового движения (точнее, от времени свободного пробега). Например, при рассеянии на заряженных примесях дрейфовая скорость высокоэнергетических носителей (носителей, обладающих высокими скоростями теплового движения) будет больше, чем низкоэнергетических при рассеянии же на тепловых колебаниях решетки, наоборот, дрейфовая скорость высокоэнергетических электронов будет ниже, чем низкоэнергетических. Более строгая теория, учитывающая это обстоятельство, приводит к следующему выражению для постоянной Холла  [c.267]


Рис. 39. Расположение уровня Ферми Wp и функции Ферми f (U7) Б вырожденных полупроводниках п- и р-типа Рис. 39. Расположение уровня Ферми Wp и функции Ферми f (U7) Б вырожденных полупроводниках п- и р-типа
Допустим теперь, что в одном и том же монокристалле одна его часть является вырожденным полупроводником п-типа, а другая — р-типа. Тогда на границе образуется так называемый р—п-пере-ход. В материале п-типа имеются подвижные отрицательные заряды (электроны проводимости), а в материале р-типа — подвижные положительные заряды (дырки). При соприкосновении вследствие наличия градиентов концентрации этих носителей электроны через р— -переход устремятся в р-полупроводник, а дырки — в -полупроводник. Переход электрических зарядов будет происходить до тех пор, пока возникший при этом процессе благодаря заряду полупроводников потенциальный барьер не достигнет такой величины, когда электроны и дырки уже не смогут его преодолеть. При равновесии возникшее электрическое поле будет точно компенсировать влияние градиентов концентрации. Условием такого равновесия является совмещение уровней Ферми в - и р-областях, когда энергетические зоны в р—л-переходе приобретают форму, показанную на рис. 40.  [c.59]

Для акустич. фононов в металлах и вырожденных полупроводниках при высоких темп-рах (Г >/ырр) Тр определяется ф-лой  [c.275]

В образцах с большой концентрацией электронов становится существенным рассеяние на них фононов. Это уменьшает Тф и ограничивает макс. значение термоэдс увлечения (эффект насыщения), Б сильно вырожденных полупроводниках, когда рассеяние фононов на электронах является преобладающим, максимально возможное значение  [c.201]

Ф.-э. имеет величину порядка 1 —10 эВ в металлах, порядка 10 —10" эВ в вырожденных полупроводниках и порядка 10 " эВ в Не. В вырожденном звёздном веществе белые карлики, пульсары) Ф.-э. может достигать 10 — 10 эВ.  [c.285]

Исследование Ш.— де X. э. позволяет получить информацию об электронных свойствах металлов и вырожденных полупроводников. Измерение периода осцилляций Д даёт величину концентрации носителей заряда N при известном значении т. Значение т можно определить по температурной зависимости амплитуды осцилляций Ш.—де X. э. Зависимость амплитуды осцилляций от Н позволяет вычислить время релаксации носителей т. Учёт спина электрона приводит к более сложным зависимостям, в частности к расщеплению экстремумов осцилляций, что, в свою очередь, позволяет определить величину g-фактора носителей заряда.  [c.478]

Здесь N—число одноэлектронных центров с двухуровневым спектром. Щель Д в спектре электронных возбуждений появляется также при переходе металлов и вырожденных полупроводников в сверхпроводящее состояние вследствие этого их Э. т. становится экспоненциально малой при кТ< А. В точке сверхпроводящего перехода (Т=Тс) Э. т, имеет характерную для фазовых переходов  [c.555]

Концентрация свободных носителей заряда в невырожденном и вырожденном полупроводниках  [c.58]

Из выражений (8.16) и (8.17) следует, что концентрация свободных носителей заряда в вырожденном полупроводнике не зависит от температуры.  [c.59]

На рис. 9.2 у вырожденного полупроводника (кривая 3) концентрация свободных носителей заряда не зависит от температуры и температурная зависимость проводимости определяется зависимостью их подвижности от температуры.  [c.67]

Вырождение полупроводника может наступить либо при высокой температуре (значение кТ велико), либо при обычньк рабочих температурах у полупроводников с малой шириной запрещенной зоны Уg, при высокой степени легирования. Степень, или уровень легирования определяется количеством примесных атомов в единице объема полупроводника.  [c.53]

Поперечная ЭДС Ux, ток У, магнитная индукция В и толш,ина полупроводниковой пластинки h легко могут быть измерены, что позволяет вычислить значение коэффициента Холла X. В системе СИ коэффициент Холла измеряется в кубических метрах на кулон. Значение коэффициента, получаемое по формуле (8-7), справедливо только для вырожденных полупроводников, с очень большой концентрацией примеси, при которой энергия активации ее практически равна нулю и можно не учитывать распределения носителей заряда по скоростям, что и допускалось при выводе формул (8-6). Более точное значение коэффициента Холла для полупроводников с различной концентрацией примеси будегг отличаться от получаемого по формуле (8-7) множителем А. Для полупроводников различных групп (с атомной, ионной решетками) численное значение А изменяется от единицы до двух в зависимости от механизма рассеяния носителей при различных температурах (например, для германия А 1,18). Таким образом, для полупроводников п-типа  [c.238]


Температурная аасисимость удельной проводимости полупроводника есть результат изменения концентрации и подвижности носителей заряда (рис. 8-6). В области низких температур полупроводник характеризуется примесной электропроводностью, а в области высоких температур — собственной электропроводностью. В области примесной электропроводности приведены три кривые для различных значений концентрации примесей, вплоть до вырождения полупроводника, когда зависимость его удельной проводимости в некотором интервале температур стано-аится подобной зависимости удельной проводимости металлов.  [c.243]

Иная ситуация имеет место в вырожденных полупроводниках. Слабое вырождение приводит к уменьшению коэффициентов поглощения на частотах, близких к краю собственного поглощения. Сильное же вырождение вообще сдвигает край поглощения в сторону более коротких волн. Этот эффект называют сдвигом Бурштейна. Он отчетливо проявляется в полупроводниках с малой плотностью состояний у дна зоны проводимости (или у потолка валентной зоны), в которых сильное вырождение достигается при сравнительно малых уровнях легирования. Так, в InSb легирование донорами (концентрация 5 10 м ) приводит к сдвигу длинноволновой границы собственного поглощения с 7,1 до 3,5 мкм. Во многих же случаях сдвиг Бурштейна маскируется другим эффектом сильного легирования — изменением плотности состояний у краев энергетических зон. Это изменение происходит вследствие размытия примесных уровней в примесную зону и слияния последней с зоной проводимости или с валентной зоной.  [c.322]

В сильных магн. полях при низких темп-рах в вырожденных полупроводниках и полуметаллах наблюдаются те же резонансные осцилляц, зависимости, что и в металлах. В невырожденных полупроводниках возможно наблюдение только акустич. циклотронного резонанса.  [c.57]

При классификации Д. т. по фи 1. принципу выделяют туннельные диодм, в к-рых толп ина обеднённого-слоя столь мала (- 100 А), что энергетич. барьер между р- и п-областями оказывается прозрачным для туннелирования. электронов из валентной зоны в зону проводимости и обратно. Они изготавливаются из высоко-легпров. (вырожденных) полупроводников. Суперпозиция туннельного и обыч юго зонного механизмов, проводимости обусловливает Л -образную вольт-ам-перную характеристику (В АХ) с участком отрм1 атель-ного дифференциального сопротивления. -Чта особенность ВАХ и определяет гл. область применения туннельных диодов — генерацию СВЧ-излучения небольшой мощности.  [c.628]

Ультраквактовый предел, В полуметаллах, в ме-та глах с аномально малым числом ялектропов и в вырожденных полупроводниках с низкой концентра-циек носителей заряда достигается ситуация, когда ниже остаётся 1 уровень Ландау. В этом случае изменения Ёр перестают быть малыми, а становятся сравнимыми с (отсчитываемой от экстремума  [c.324]

Примеры элементов с О. д. с. 1) Электронно-дырочный переход в вырожденных полупроводниках (mt/м-нельный диод) имеет вольт-ампернуго характеристику Л -типа. Включение его в цепь приводит к возникновению в цепи неустойчивости и генерации колебаний. Амплитуда и частотный спектр колебаний определяются параметрами внеш. цепи и нелинейностью вольт-ампер-ной характеристики с О. д. с. Наличие участка с О. д. с. позволяет использовать туннельный диод в качестве быстродействующего переключателя.  [c.514]

Мин. энергия, требуемая для эмиссии электрона при фотоэлектрич. эффекте, при вторичной электров-ной эмиссии, когда эмиссия происходит не в результате спонтанного теплового возбуждения за счёт внутр. энергии тела, а под действием впеш. источника (света, быстрого электрона), в общем случае отличается от Р. в., к-рую поэтому для определённости называют термоэлектронной Р. в. В металлах и сильно легированных (вырожденных) полупроводниках, в к-рых верх, уровень заполненных электронами состояний совпадает с фотоэлектрич. Р. в. совпадает с термоэлектронной Р. в. Но в сравнительно чистых полупроводниках верхний заполненный уровень совпадает с краем валентной зоны, к-рый во мн. случаях ниже р, вследствие чего фотоэлектрич. Р. в. больше термоэлектронной Р. в.  [c.194]

Р. в. измеряют по температурной зависимости и по величине терм оэмиссионжого тока в металлах и вырожденных полупроводниках — по красной границе внеш. фотоэффекта. Контактная разность потенциалов 7к двух тел равна разности их Р. в. измеряя 17 между исследуемой поверхностью и эталонной, Р. в, к-рой известна, находят Р. в, первой.  [c.194]

СКИН-ЭФФЁКТ — затухание эл.-магн. волн по мере их проникновения в проводящую среду. Переменное во временя электрич. поле В и связанное с ним магн. поле Н не проникают в глубь проводника, а сосредоточены в осн. в относительно тонком приповерхностном слое толщиной 6, называемой глубиной скин-слоя. Происхождение С.-э. объясняется тем, что под действием внеш. перем, ноля в проводнике свободные электроны создают токи, поле к-рых компенсирует внеш. поле в объёме проводника. С.-э. проявляется у металлов, в плазме, ионосфере (на коротких волнах), в вырожденных полупроводниках и др. средах с достаточно большой проводимостью.  [c.541]

Влияние в пругого рассрявня. Бели доминирующим процессом сбоя фазы является неупругре рассеяние, то т, растёт с понижением Т и всё большее число петлеобразных участков траекторцй с. размерами L даёт вклад в До. При этом абс. величина До увеличивается, а сама проводимость уменьшается согласно (2). Этим, в частности, объясняется появление минимума на температурной зависимости сопротивления метал-лич. плёнок и вырожденных полупроводников. Рост сопротивления при понижении Т — результат совместного проявления поправок разной природы, возникающих как за счёт эффектов С. л., так и межэлектронного взаимодействия.  [c.551]

Нелинейное ур-ние для V(r), получающееся из (3) и (4). решается либо численно напр., в случае сферически симметричного атома решение протабулировано), либо в линейном приближении (в случае экранирования заряж. примеси). В дальнейшем Т.— Ф.т. была усовершенствована путём учёта обменных, корреляционных и релятивистских эффектов, поправок на градиент плотности, конечную темп-ру. Т.—Ф. т. применима, помимо многоэлектронных атомов и молекул, также к атомному ядру, внутризвёзд-ной материи, экранированию зарядов в металлах и вырожденных полупроводниках и т. д.  [c.123]


ТУННЕЛЬНЫЙ ДИОД (Эсаки диод) — полупроводниковый диод, содержащий р—л-переход с очень малой толщиной запирающего слоя. Действие Т, д. основано на прохождении свободных носителей заряда (электронов) сквозь узкий потенн- барьер благодаря квантовомеханич, процессу туннелирования (см. Туннельный эффект). Поскольку вероятность туннельного просачивания электронов через барьер в значит, мере определяется шириной области пространств, заряда в р — -переходе, Т. д. изготовляют на основе вырожденных полупроводников (с кон-центрагшей примесей до Ю - —10 м ). При этом получается резкий р—п-переход с толщиной запирающего слоя  [c.174]

В квантующем магн. поле Н характерный импульс электрона в плоскости, перпендикулярной Н. порядка Л/)., где т, и, магнитная длина X = ftjeHy . Поэтому объём фазового пространства фононов, взаимодействующих с электронами, а вместе с ним и термоэдс увлечения растут с полем W, и в квантующем поле она превосходит диффузионную термоэдс в десятки раз. Зависимость от Т и Н определяется механизмом фонон-фононной релаксации. В вырожденных полупроводниках и металлах наблюдаются квантовые осцилляции термоэдс увлечения в сильных полях (см. Термоэдс осцилляции).  [c.201]

В металлах и вырожденных полупроводниках Ф. Э. расположена в одной из разрешённых энергетич. зон. В, невырожденных полупроводниках Ф.-э. совпадает с серединой запрещённой зоны (при Г=ОК) и смещается в сторону разрешённой зоны, обладающей меньшей эфф. массой, при ТФОК  [c.285]

В полупроводниках и диэлектриках порог Ф. э. Avo = электронное сродство, равное высоте потенц, барьера на границе для электронов проводимости. Величина Avo, иногда называемая для полупроводников фотоэлектрич, работой выхода, как правило, превосходит Ф. При hvквантовым выходом, связанная с возбуждением электронов с уровней примесей, дефектов и поверхностных состояний, расположенных в запрещённой зоне, а также из зоны проводимости (а вырожденных полупроводниках и-типа). Для большинства чистых полупроводников Луо>3,5 эВ и Ф. э. наблюдается только в УФ-области. Исключение составляют антимони-ды щелочных металлов ( sjSb и др.), для к-рых Ф. э, наблюдается не только в УФ-, но и в видимой области спектра, а для Na2KSb( s) и в ближней ИК-области до 900 нм (см. Фотокатод). Нанесение на полупроводники моноатомных слоев щелочных и щелочноземельных металлов, а также монослоёв этих металлов и кислорода приводит к уменьшению % и Avo,  [c.365]

Электронная теплоёмкость—часть полной теплоёмкости твёрдого тела, обусловленная тепловым движением электронов. Э. т. диэлектриков и слаболегированных полупроводников, как правило, пренебрежимо мала. В вырожденных полупроводниках и металлах (в несверхпроводящем состоянии) при достаточно низких темп-рах Э. т. С э вносит заметный вклад в полную теплоёмкость С. Его можно оценить, рассматривая электроны (или дырки) как идеальный фермн-газ квазичастиц, характеризующихся нек-рой плотностью состояний где N )—плот-  [c.555]

В вырожденных полупроводниках ток переносят носители с энергиями, лежащими в слое шириной kT нблизи энер-  [c.643]

В лазерах на гомопереходе накачка осуществляется в р-п-переходе, в котором как р-, так и л-области выполнены из одного и того же полупроводникового материала (например, GaAs). Как р-, так и л-область являются вырожденными полупроводниками, т. е. концентрации акцепторов и доноров в них столь велики (- 10 атомов/см ), что уровни Ферми Efp для /о-области попадают в валентную зону, а уровни Ферми Ef для -области — в зону проводимости. Когда переход сформирован,  [c.409]


Смотреть страницы где упоминается термин Вырожденные полупроводники : [c.136]    [c.197]    [c.367]    [c.372]    [c.397]    [c.428]    [c.602]    [c.274]    [c.66]    [c.83]    [c.98]    [c.284]    [c.478]    [c.450]   
Физика твердого тела Т.2 (0) -- [ c.195 ]



ПОИСК



Вырождение

Вырожденные полупроводники также Полупроводник

Газ вырожденный

Зиличихис А. Л. ТермоЭДС в магнитных полупроводниках с вырожденной d-зоной

Концентрация свободных носителей заряда в невырожденном и вырожденном полупроводниках

Полупроводники



© 2025 Mash-xxl.info Реклама на сайте