Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КЭП с матрицей кобальта

О — экспериментальные точки для композита частицы — карбид вольфрама, матрица — кобальт) I — нижняя граница 2 — приближенное решение (кубические включения)  [c.38]

Источник— кобальт в матрице палладия при температуре 25 °С  [c.1062]

Композиционные материалы представляют сочетание металлической основы (матрицы) и упрочняющего наполнителя — высокопрочных волокон (бора, вольфрама, молибдена и др.), пропитанных расплавленными металлами (кобальтом, алю.минием и т. д.). Варьируя компоненты и их объемное сочетание, получают материалы с высокими механическими характеристиками, жаропрочностью и другими свойствами. Композиционные армированные материалы по прочности и износостойкости значительно превосходят стали и высококачественные сплавы.  [c.40]


Области на границе зерен материала, которые обладают заметной локальной ползучестью при рабочих уровнях макронапряжений в материале, сглаживают микронапряжение (подобно кобальту в цементированном карбиде). При этом если толщина граничных слоев мала, ползучесть материала на макроуровне практически отсутствует [3]. Применительно к композитам из сказанного можно сделать следующий вывод значительная местная неупругость волокна, матрицы или поверхности раздела между ними должна играть чрезвычайно важную роль для композита в целом. Причем не важно, проявляется это или нет в виде заметной нелинейности на диаграммах нагрузка — перемещение (или о(е)) образцов или конструкций.  [c.14]

Перераспределение нагрузки через матрицу приводит к тому, что уменьшение жесткости материала происходит только в крайне ограниченной области, непосредственно примыкающей к месту разрушения волокна. Местная пластичность и текучесть, повышенная деформативность матрицы или поверхности раздела между волокном и матрицей локализуют места разрушения и перераспределяют нагрузку между армирующими элементами. Именно эти качества играют главную роль в обеспечении надежности композиционного материала, подобно пластичности кобальта в цементированном карбиде или трению, обеспечивающему перенос нагрузки в обычном канате, сплетенном так, что растягивающая нагрузка вызывает сжатие между волокнами.  [c.18]

Мартенситно-стареющие стали - это высокопрочные стали с незначительным содержанием углерода. Упрочнение их достигается использованием элементов, заменяющих углерод никеля, кобальта и молибдена. Эти элементы обусловливают дисперсионное твердение мартенситной железо-никелевой матрицы при старении, отсюда и название сталей. Такие стали можно применять в станкостроении, самолетостроении, космической технике. Они идут на изготовление корпусов ракетных двигателей, деталей шасси самолетов, штампованных узлов и крепежных деталей [27].  [c.40]

Металлическая матрица композиционных материалов выбирается из условий получения максимальной удельной прочности материала, обеспечения связи между упрочняющими элементами и получения необходимых технологических и эксплуатационных свойств. Она обеспечивает передачу нагрузки на волокна, вносит существенный вклад в модуль упругости и снижает чувствительность к концентраторам напряжений. В качестве матриц используются магний, алюминий, титан, кобальт, никель и их сплавы, стали. Преимуществами металлических матриц являются  [c.78]

Магнитные сплавы платины принадлежат к системе платина—железо и системе платина—кобальт. Оба сплава обладают очень большой коэрцитивной силой по намагниченности Нсм= = 520 кА м и сравнительно большой остаточной индукцией. Поэтому у них коэрцитивная сила по индукции Нсв н энергетическое произведение (ВН)тах достигают больших значений. Высокое значение объясняют наличием в сплавах платины однодоменных частиц Ре—Р( и Со—Р(, рассеянных в маломагнитной матрице. Оба сплава платины пластичны и легко поддаются всем видам механической обработки, однако из-за высокой стоимости их применение ограничено только микроминиатюрными магнитами.  [c.117]


Активная среда твердотельного лазера содержит активные ионы примеси в твердотельной матрице. Именно в ионах примесей и создается инверсная заселенность. В качестве примесных ионов обычно используют ионы переходных металлов (марганец, хром, никель и кобальт) или редкоземельных элементов. Эти вещества имеют незаполненные внутренние оболочки при наличии электронов на внешней. Электроны на внешней оболочке частично экранируют электрическое поле соседних ионов кристаллической решетки, приводящее к сильному уширению испускаемых активным ионом спектральных линий, что, в свою очередь, приводит к росту коэффициента усиления и облегчает получение инверсной заселенности.  [c.168]

Суперпарамагнетизм наблюдался на наночастицах (li < 10 нм) никеля в матрицах из силикагеля [355] и свинца [356] кобальта в матрице меди [357] и в ртути [358] железа в ртути [351, 358] и в Р-латуни [359]. Экспериментальные данные по суперпарамагнетизму достаточно подробно рассмотрены в [10, И], поэтому кратко обсудим лишь результаты недавних исследований.  [c.100]

Основные виды композитов на основе металлической матрицы включают волокнистые, дисперсно-упрочненные, псевдосплавы, а также эвтектические. В качестве матриц для металлических композиционных материалов наиболее широко используются алюминий, магний, титан, никель, кобальт.  [c.105]

Матрица суперсплавов всегда представляет собой плотно-упакованную аустенитную фазу с решеткой г.ц.к. Рис. 1.6 иллюстрирует область структуры г.ц.к. в трех удобных пространственных изображениях в виде простой тройной фазовой диаграммы, типичной четверной и полярной. Аустенит появляется из небольшой области г.ц.к. в системе Fe—Сг, введение никеля или кобальта приводит к расширению этой области. В большинстве случаев железо практически полностью исключают из состава сплавов. Таким образом, у истоков суперсплавов находится нержавеющая сталь. Основной вклад в уровень механической надежности сплава вносит твердорастворное упрочнение матрицы. Избранные варианты  [c.25]

В качестве материалов матриц при изготовлении МКМ применяют освоенные промышленностью металлы и сплавы, а также сплавы, создаваемые специально для получения МКМ. В зависимости от требуемых эксплуатационных свойств применяют следующие материалы легкие металлы и сплавы на основе алюминия и магния сплавы на основе титана, меди жаропрочные и жаростойкие сплавы на основе железа, никеля и кобальта тугоплавкие сплавы на основе вольфрама, молибдена и ниобия.  [c.464]

Они представляют собой композиционный материал, состоящий из порошков карбидов титана, вольфрама, тантала, карбонитрида титана и связующей фазы — матрицы, в качестве которой используется кобальт—никель—молибден.  [c.574]

В работе [98] показано, что каждая нанокомпозитная частица W —Со размером около 75 мкм состоит из нескольких миллионов нанокристаллических зерен W с размером менее 50 нм, распределенных в матрице кобальта. Спеканием нанокомпозит-ной смеси карбида вольфрама с 6,8 мае. % Со и 1 мае. % V получены сплавы, в которых 60 % зерен W имели размер менее 250 и 20 % — менее 170 нм. Еш е более тонкозернистой структурой обладал сплав, содержащий помимо карбида вольфрама 9,4 мае. % Со, 0,8 мае. % r j и 0,4 мае. % V . После спекания при 1670 К в этом сплаве 60 % зерен карбида вольфрама имели размер менее 140 и 20 % — менее 80 нм. Сравнение наносплава и обычного поликристаллического сплава с одинаковой твердостью показывает, что трещиностойкость наносплава в 1,2—1,4 раза больше, чем обычного крупнозернистого сплава [98].  [c.34]

Введение кобальта несколько снижает критическую точку мартенситного превращения. Влияние кобальта на механические свойства мартенситно-стареющих сталей обусловлено участием в процессе старения за счет образования сложных соединений Со—Ni— Мо—Ti, когерентно связанных с металлической матрицей. Кобальт, как и никель, уменьшает растворимость молибдена в а-железе, подавляет образование 6-феррита и способствует Зттрочнению при старении. Он задерживает процесс разупрочнения, уменьшая скорость коагуляции высокодисперсных фаз.  [c.617]

Главный процесс, формирующий структуру чугуна, — процесс графитизации (выделение углерода в структурно-свободном виде), так как от него зависит не только количество, форма и рас-нредолоппе графита в структуре, но и вид металлической основы (матрицы) чугуна. В зависимости от степени графитизации матрица может быть перлитно-цементитной (П + Ц), перлитной (II), перлитно-ферритной (П Ф) и ферритной (Ф). Цементит перлита называют эвтектоидным, остальной цементит — структурно-сво-бодным. Некоторые элементы, вводимые в чугун, способствуют графитизации, другие — препятствуют. На рис. 148 знаком — обозначена графитизирующая способность рассматриваемых элементов, знаком 1- задерживающее процесс графитизации действие (отбеливание). Как следует из приведенной схемы, нанболь-шее графитнзирующее действие оказывают углерод и кремний, наименьшее — кобальт и медь.  [c.322]


Для большинства жестких наполнителей в тех случаях, к /дз поверхность раздела прочна, вязкость разрушения уменьшается с ростом их объемной доли увеличение объемной доли напглнителя сопровождается усилением стеснения и пластического течения матрицы. В широко исследованной системе кобальт — карбид вольфрама стеснение матрицы при 80 об.% упрочнителя достаточно велико, чтобы не происходило ее заметного пластического течения поэтому разрушение происходит почти исключительно путем связывания трещиной в матрице смежных разрушенных карбидных частиц. В этой ситуации прочность при разрушении существенно зависит от тех же статистических функций, которые описывают разрушение волокнистых композитов если довольно много частиц разрушено, то несущая способность остальных частиц оказывается недостаточной и композит будет разрушаться. При меньшей объемной доле упрочнителя более значительную роль играют характеристики матрицы [48].  [c.303]

Примерами композитов такого типа являются спеченные сплавы УС — Со промышленных составов, располагающиеся на левых, т. е. восходящих, частях кривых на рис. 15—17, где прочность увеличивается с увеличением содержания кобальта, размера частиц W или среднего свободного пути в матрице. Несколько теорий разрушения [26, 38, 53, 65] основаны на критерии Гриффитса — Орована в них делается попытка связать критическое разрушающее напряжение сГр с удельной работой разрушения ур  [c.93]

Методы порошковой металлургии широко применяют о иромы/л-ленности для получения металлокерамическпх, металлических и керамических композиций. Достаточно отметить получаемые этим методом и широко используемые в технике металлорежуш,ие твердосплавные пластины, представляющие собой спеченную смесь порошков кобальта и карбидов вольфрама или титана. Однако для получения волокнистых композиционных материалов методы порошковой металлургии стали использовать относительно недавно, причем почти все эти методы — прессование с последующим спеканием, горячее прессование, экструзия, динамическое уплотнение и др. — оказались пригодными для указанных целей, разумеется, в зависимости от природы составляющих композиционных материалов — матрицы и упрочнителя.  [c.150]

Разработка сплавов типа САП и САС (спеченные алюминиевые сплавы) иовлекла за собой многочисленные попытки получения жаропрочных комлозици-он ных материалов на основе более тугоплавких матриц титана, молибдена, железа, кобальта, никеля, тантала, меди, хрома и ванадия. В качестве дисперс-. ной фазы в сплавы пробовали вводить окислы, карбиды, нитриды и бориды. Однако здесь многих ис-, следователей постигла неудача из-за отсутствия фундаментальных сведений о природе взаимодействия на границе разнородных компонентов.  [c.77]

Твердые сплавы видна в Германии и победит в Советском Союзе были созданы на основе порошкообразных компонентов. Твердость быстрорежущего сплава видиа 9,6—9,8 по шкале Мооса. Это почти твердость алмаза (по немецки ви диамант значит как алмаз ), В 1925 году в одной из лабораторий электротехнической фирмы Осрам был изготовлен сплав для производства вольфрамовых нитей, предназначенных для электролампочек. При протяжке вольфрамовой проволоки через специальную стальную матрицу— фильер матрица быстро приходила в негодность. Решили попробовать изготовить ее из смеси порошков Вольфрама (83—90 процентов), углерода (5,5—6,5 процента), кобальта (10—12 процентов) и железа (1—2 процента). Иногда кобальт заменял И никелем. После лрессования заготовки ее спекали по специальному режиму. Никель или кобальт сообщали сплаву вязкость, а соединение вольфрама с углеродом (карбид вольфрама) придавало ему твердость.  [c.78]

Магнитные композиции состоят из основы (порошок ферро- или ферри-магнетика) и связующего (синтетические смолы или резина). Твердые и пластичные композиции называются магнитопластами, а эластичные — магнитоэластами. В зависимости от крупности магнитных частиц композиции могут быть магнитно-твердыми даже и в том случае, если используется порошок магнитно-мягкого материала, например железа. Для этого необходимо и достаточно, чтобы частицы были однодоменными. Если композицию выполняют из магнитно-твердого материала, например феррита, интерметаллического соединения редкоземельных металлов с кобальтом и, других, то частицы могут быть многодоменными. Однако для получения высоких магнитных свойств необходимо, чтобы частицы были монокри-сталлическими, а их расположение в немагнитной матрице (т. е. связующем) было упорядоченным (оси легкого намагничивания всех монокристаллов должны быть направлены одинаково).  [c.126]

Основные работы по созданию жаропрочных дисперсноупрочненных материалов на основе никеля, кобальта, меди, хрома, железа, вольфрама и других металлов были развернуты в начале 60-х годов. Было показано, что наиболее эффективное упрочнение обеспечивается при Содержании упрочняющей фазы 3-15% (объемн.), размере ее частиц до 1 мкм (лучше 0,01 - 0,05 мкм) и среднем расстоянии между ними 0,1 - 0,5 мкм. Дисперсноупрочненные материалы сохраняют микроге-терогенное строение и дислокационную субструктуру, формирующуюся в процессе их деформации и термической обработки, а следовательно, и работоспособность вплоть до 0,9 - 0,95 матрицы.  [c.169]

Волокна, полученные из рассмотренных способов, смешивают с порошком металла, образуюш,его матрицу. Выбор матричного металла определяется его совместимостью с материалом волокна, технологическими и эксплуатационными характеристиками композиционного материала. Обычно используют порошки алюминия, меди, титана и других тугоплавких металлов и их сплавов, а также жаропрочных сплавов на основе железа, никеля и кобальта. Смешивание порошка матричного металла с волокнами осуш,ествляют механическим (в случае дискретных волокон) или химическим (на волокна осаждают матричный металл из раствора его химического соединения) способом. Механическое смешивание лучше проводить в устройствах опрокиды-ваюш,егося типа (двухконусном смесителе, смесителе с эксцентричной осью и др.), так как барабанные смесители вызывают заметное комкование волокна.  [c.183]


Описаны f28l методы порошковой металлургии, применимые для проияводства жаростойких сплавов с твердеющей основой, содержащих 5—30"ij хрома, до 25°п железа и до 90% никеля и (или) до 70 о кобальта. Сплав упрочняется путем диспергирования в матрице фазы, препятствующей сдвигу (и возврату) и состоящей из карбидов, боридов, сши-щидов н нитридов титана, циркония, ниобия, тантала и ванадия. Сплав имеет высокое сопротивление ползучести в интервале 800—1050.  [c.314]

При температурах ниже полиморфного превращения (470 С) ДКМ иа основе кобальта имеют более высокое временное сопротивление и меньщую пластичность, чем ДКМ на основе никеля. При высоких температурах свойства кобальтовых и никелевых ДКМ отличаются незначительно. Введение небольших добавок циркония в кобальтовую матрицу повышает пластичность, временный и длительный пределы прочности (табл. 118, 119), Леги-  [c.347]

Высокие механические свойства волокнистых ЭКМ на основе ннкеля и кобальта, упрочненных карбида.ми, объясняются комиознционной структурой, при которой пластичная матрица армирована высоконрочнымы ориентированными кристаллами. Дополнительное увеличение ярочностн ЭКМ достигается легированием твердого раствора матрицы или ее дисперсным упрочнением.  [c.362]

Значительное улучшение антифрикционных свойств титановых сплавов достигается плазменным напылением из карбида титана, плакированного никелем, кобальтом и медью. Райномерное распределение карбида титана в металлической матрице покрытия способствует высокой прирабатываемости титанового сплава с покрытием в паре с бронзовой деталью, низкому коэффициенту трения и небольшому износу. Микротвердость ка идных включений составляет (9,6—16) 10 МПа, а матрицы - 3,8 10 МПа [213].  [c.160]

Твердосплавные волоки производят на основе карбида вольфрама, имеющего большую твердость. Для соединения карбида вольфрама (порошок) в монолитное твердое тело используют кобальт. Применяют следующие твердые сплавы при волочении проволоки ВК2—ВК6 при волочении труб и прутков ВК8—ВК15. Буквенные обозначения и цифры в обозначении твердых сплавов-указывают В — карбид вольфрама, К — кобальт цифра— содержание кобальта в процентах. Чем меньше кобальта, тем выше твердость материала волоки и меньше механическая прочность. Заготовки для волок получают холодным прессованием порошкообразной смеси карбида вольфрама и кобальта в специальных матрицах. Спрессованная заготовка подвергается сушке при температуре 100°С в течение 24 ч и спеканию при 1350—1500°С, После спекания заготовка волоки приобретает твердость в пределах HR 85—90 и достаточную механическук> прочность. Для увеличения жесткости и прочности волоку запрессовывают в оправку или закрепляют в оправке пайкой медью. Рабочий канал твердосплавных волок шлифуется на специальных станках нитью, иглой и полируется. Для шлифования рабочего канала больших волок применяют шлифовальные круги. Полирование производится различными пастами с алмазной пылью. Волоки из природных или синтетических алмазов применяют при волочении проволоки диаметром <1 мм. Обработку канала волоки производят при помощи алмазных зерен или порошка. Алмазные волоки закрепляют в углублении оправки бронзовыми кольцевыми элементами.  [c.337]

Исследована возможность применения в качестве матрицы различных металлов алюминия, магния, меди, никеля, кобальта и многих других. Наиболее эффективными для применения на практике ока1ались  [c.241]

В табл. 3.3 приведены различные модели высокотемпературного упрочнения, которые, по-видимому, могут быть непосредственно отнесены к суперсплавам с аустенитной структурой. Для твердых растворов критическими параметрами являются содержание растворенного элемента и различия в упругих модулях и атомных радиусах растворенного элемента и матрицы. Выделение при старении когерентных частиц с упорядоченной решеткой дает мощный прирост прочности аустенитной матрице на железной и никелевой основе. Однако для сплавов на основе кобальта реализовать такой механизм упрочнения не удается. К числу характеристических параметров преципитата следует отнести объемную долю, радиус и энергию антифазных границ. В некоторых случаях важное место отводят и размерному несоответствию решетки фазы решетке матрицы, особенно когда оно достигает или превышает 1 %. Этот параметр контролирует прочность сплавов IN-718 и IN-9Q1, упрочняемых вследствие размерного несоответствия решеток матрицы и фазы (NijNb). Отмечено [48], что применительно к невысоким температурам, когда  [c.121]

Согласно микрорентгеноспектральному анализу, типичный атомный состав М23С4 может быть выражен, как riy o Wj следовательно, значительное место в карбиде замещено кобальтом, что и подтверждает фазовая диаграмма рис.5.6. В сплавах, предназначенных для литья по выплавляемым моделям, в процессе затвердевания могут образовываться первичные выделения М зС . У большинства промышленных сплавов это соединение представляет собой фазу, которая кристаллизуется последней, ее обнаруживают главным образом в виде междендритных выделений во вторичных дендритных ветвях. Это придает микроструктуре эвтектический вид, она состоит из последовательно чередующихся слоев М зС и Зг-матрицы морфологические особенности этой структуры могут изменяться в зависимости от химического состава сплава (рис.5.7). Образование эвтектического карбида иллюстрировано схемой на рис.5.8.  [c.188]

Роль дефектов упаковки при старении кобальтовых сплавов подробно изучена в работе [186—188]. Для выявления сегрегаций Сузуки была разработана, в частности, методика измерения интенсивности рассеяния рентгеновских лучей под малыми углами. Сплавы на основе кобальта удобны тем, что изменение состава приводит к значительному изменению энергии дефектов упаковки 7- При содержании 30% Ni у 10 дж1см (1 эрг/см ). Малая величина у обеспечивает значительное расщепление дислокаций и большую плотность дефектов упаковки даже после небольшой деформации. Исследовались сплавы с основой р-Со (18—28% Ni и 5% Nb). В этих сплавах при старении образуется промежуточная фаза, изоморфная матрица, с упорядоченной структурой типа uaAu. Поскольку различие в атомных диаметрах кобальта и никеля, с одной стороны, и ниобия, с другой, значительно, можно было ожидать сильного взаимодействия примесей с дефектами. После закалки и деформации отмечалось большое количество расщепленных дислокаций. После старения обнаруживались пластинки промежуточной фазы [длиной несколько микрон и толщиной 10—15 нм ( 100—  [c.237]

В качестве металлической матрицы используют сплавы алюминия, магния, меди, кобальта. Керамической матрицей могут бь1ть оксиды алюминия, циркония, магния, карбиды титана, кремния, бора, нитриды кремния, бора, титана, алюминия и т. д. Основой полимерной матрицы являются термореактивные смолы (фенолформальде-гидные, эпоксидные).  [c.125]


Смотреть страницы где упоминается термин КЭП с матрицей кобальта : [c.36]    [c.116]    [c.389]    [c.14]    [c.127]    [c.180]    [c.382]    [c.75]    [c.112]    [c.126]    [c.117]    [c.95]    [c.84]    [c.164]    [c.410]    [c.332]   
Неорганические композиционные материалы (1983) -- [ c.178 ]



ПОИСК



Кобальт

Кобальтит

Покрытия с матрицей из кобальта и железа



© 2025 Mash-xxl.info Реклама на сайте