Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Синус функция, разложение в ряд

Синус функция, разложение в ряд 137 Система единиц 24, естественная 26, когерентная 23, международная 27  [c.299]

Так, если в выражениях (4.37), (4.38) ограничиться п членами разложения, то и функцию ф также представим в виде разложения в ряд по синусам с п членами. Тогда  [c.86]

Уравнения п. 18 не содержат в себе никаких иных функций времени, кроме частных дифференциалов функции П поэтому, когда определяют ту часть А функции Q, которая не зависит от времени t и содержит только произвольные постоянные а,Ь,с,. . путем разложения в ряды или каким-либо иным способом, то достаточно в этих уравнениях поставить А вместо Д, и тогда мы прямо получим уравнения между величинами а,Ь,с,..., которые стали переменными, и временем t эти уравнения послужат для определения их вековых изменений, так как они совершенно свободны от всяких синусов и косинусов.  [c.432]


В этой формуле а , а п, Ьп, Ь п являются коэфициентами разложения в ряд синусов функций .  [c.107]

Функция / (х) = аР четная, поэтому разложение в ряд Фурье не будет содержать синусов. Подставив в подынтегральное выражение значения для До и а также приведя функцию f (х) к 2и функции, т. е. /(х) = т  [c.306]

Таким образом, рещение, соответствующее одному члену разложения функции ф в ряд по синусам, имеет вид  [c.369]

Пользуясь разложением в ряд известной функции гиперболического синуса, формулу (46,2) можно записать в виде  [c.178]

Предварительно рассмотрим разложение в ряд Фурье по синусам функции / (х), заданной в интервале О < л- < /, которая равна нулю при л < /г и при X > / — Ли равна единице при /г < х < / — Л (фиг. 320) (предполагается, что вне интервала О < х < / функция / (х) продолжена, как показано на фиг. 320, пунктиром).  [c.521]

В частном случае, при большом п, коэфициенты после разложения функции a в ряд Фурье по синусам кратных дуг получаются равными  [c.696]

Выражение (3.64) представляет собой разложение функции F x) в ряд Фурье по синусам (предполагается, что такое разложение возможно). Коэффициенты этого разложения определяются известной ( рмулой  [c.289]

Здесь р — целое положительное число. Для получения формулы обращения воспользуемся теорией рядов Фурье. Будем считать, что функция (х) разложима в ряд Фурье по синусам. Тогда коэффициенты разложения определяются формулами  [c.81]

Это равенство есть разложение функции F(x) в ряд Фурье по синусам. Коэффициенты ряда Фурье определяются следующим выражением .  [c.61]

Для определения вековых возмущений необходимо лишь вместо Q подставить непериодическую часть этой функции, т. е. первый член разложения О в ряды синусов и косинусов углов, зависящих от средних движений возмущаемой и возмущающих планет. Действительно, так как 9 является только функцией эллиптических координат этих планет, которые всегда —по крайней мере в том случае, когда эксцентриситеты и наклонения незначительны — могут быть разложены в ряды синусов и косинусов углов, пропорциональных аномалиям и средним долготам, то функцию 9 можно разложить в ряд подобного же вида, и тогда первый член, не содержащий синуса и косинуса, будет единственным, который может дать вековые уравнения.  [c.114]

Легко убедиться, что это уравнение однозначно определяет значение Действительно, припоминая определение гиперболического синуса и подставляя вместо показательных функций, входящих в его выражение, их разложения в степенные ряды по степеням , найдем  [c.214]

Формула обращения обычно находится при помощи разложения функции в ряды по ортогональным функциям соответствующей задачи Штурма — Лиувилля. Поэтому рещения, получаемые этими методами, имеют те же принципиальные недостатки, как и решения, получаемые классическими методами. Так, формулы обращения имеют вид для синус-преобразования  [c.83]


Разложение функции 8(2) в ряд по косинусам означает ее четность, т. е. мы считаем, что на поверхности МИС расположен слой вещества половинной толщины (как это и показано на рис. 3.4). При более общем разложении 8 (г) в ряд по синусам и косинусам появляется только дополнительный фазовый сдвиг у отраженной и прошедшей волн. Энергетические же коэффициенты отражения и прохождения при этом не изменятся.  [c.86]

Здесь i z и si z — интегральные косинус и синус. Используя известные [12] разложения этих функций в ряды нри малых з, убедимся, что для Hiz) прн всех 0[c.376]

Последние формулы представляют собой разложение функций ф(а ) Ифг(а ) в ряд Фурье по синусам в интервале (О, Z).  [c.353]

Постоянство передаточной функции имеет место при ф < 25°, так как погрешность при этом меньше 10%. Формулу (7.5) иногда необходимо рассматривать в виде отрезка ряда. Тогда при разложении синус-функции в степенной ряд с сохранением первых двух членов ряда  [c.137]

Силовые функции Н х), Н х), Нз х), направление осей координат, коэффициенты а, рассматривают согласно изложенному в п. 12.4. При этом нужно учесть, что 033 = 0,6022 при грузовом воздействии все элементы настила основной системы (если они одинаковы) имеют один и тот же прогиб, вследствие чего а1р = а2р — 0. В третьем уравнении грузовой член представляет прогиб элемента под нагрузкой как балки, опертой на две опоры по коротким сторонам. Поэтому при удержании только первого члена из разложения нагрузки в ряд по синусам имеем  [c.227]

III. Разложение по синусам. Разложим теперь только что проанализированную функцию в ряд синусов. Допустим снова, что  [c.138]

Введем следующее важное соотнощение, связывающее показательную функцию, косинус и синус и доказываемое разложением этих трех функций в степенные ряды  [c.139]

Поскольку получить точное аналитическое решение дифференциального уравнения (20.12) в общем случае невозможно, будем искать его в виде бесконечного ряда. Для пластины с шарнирно опертыми по всем четырем сторонам краями удобно использовать разложение искомой функции прогиба w(x,y) в двойной тригонометрический ряд по синусам  [c.436]

Обыкновенно не имеется аналитического выражения f(t), а на основании снятых индикаторных диаграмм возможно только графически представить изменение этой функции тогда разложение в ряд (4) можно выполнить графическим приемом Фишер-Хиннена i) или известным прибором гармонический анализатор , который за один обвод дает пять коэффициентов ряда синусов и пять коэффициентов ряда косинусов, что вполне достаточно для практических целей. Когда разложение тем или другим способом выполнено, мы можем уравнение (3) переписать так  [c.16]

Здесь величины, обозначенные индексом я, зависят лишь от угла а. Каждому целому значению п соответствует три таких уравнения. Если бы ) разложении функций X, Y ч Z ъ ряд Фурье входили как синусы, так и косинусы, то для каждого целого п кроме трех уравнений (16) получились бы еще три уравнения для определения коэфициентов более общего разложения в ряд Фурье эти нозые уравнения отличались бы от уравнений (16) лишь знаками перед п в двух последних уравнениях (16). Но мы для упрощения вычислений предположим, что разложение в ряд Фурье внешних сил, а следовательно, и напряжений, можно представить в следующем простом виде  [c.26]

Приближенные значения сосредоточенных постоянных для всех описанных выше эквивалентных схем могут быть получены тем же способом, т. е. путем разложения в ряд параметров эквивалентной схемы вблизи частоты резонанса и приравнивания членов первого порядка в этих рядах и в аналогичных рядах, полученных для простейшей электрической цепи с сосредоточенными постоянными. Функции, выраженные через синусы, косинусы, тангенсы и котангенсы, вблизи их нулей могут быть анироксимированы последовательной цепью ЬС, а вблизи их полюсов — параллельной цепью ЬС. Область применимости каждой схемы с сосредоточенными постоянными может быть определена путем сравнения членов второго порядка в разложениях, которые рассмотрены выше.  [c.293]

Усилия, моменты, компоненты деформации и углы поворота с помощью соотношений 23.1 можно также без труда выразить через ряды вида (23.4.3). Формулы для коэффициентов этих рядов громоздки, и их приводить не будем. Заметим только, что величины Ut, S21, 5i2, H i, Нц и Ni будут при этом разложены в ряды по косинусам, а величины и , w, ТТ , Gi, G , — в ряды по синусам. Отсюда, между прочим, вытекает, что ряды для первой группы величин оказываются неполными — в них отсутствуют слагаемые, отвечающие m = 0. Это связано с тем, что для потенциальной функции Ф использовано разложение (23.4.1), в котором соответствующий член отсутствует. В дальнейшем считается, что пропорционально т, поэтому было бы бессмысленно начинать ряд для Ф с нулевого члена, но к разыскиваемому решению надо присоединить еще одно, в котором и , S i, S , Н , Я12, Ni являются функциями одного 9, а остальные перемещения, усилия и мом ты равны нулю. При помощи уравнений (23.1.7), положив в них X = Y = Z = = О, мы без труда найдем такое напряженное состояние. О)ответствующие перемещения будут  [c.343]


Однако с другой точки зрении особое значение имеет именно разложение функций в ряд по синусам или косинусам это относится к вопросу о разложении функций от времени. В 19 мы уже останавливались на причине этого с точки зрения диналгнки.  [c.136]

Для определения нормальных колебаний примем, что и и V пропорциональны os( + e). Далее, поскольку кольцо образует полный круг, м и у являются периодическими функциями 0 с периодом 2я и, согласно теореме О урье, могут быть разложены в ряд по синусам и косинусам углов, кратных 9. Более того, легко показать, что каждый член любого порядка в разложении должен в отдельности удовлетворять каждому уравнению. Действительно, оказывается, что решение можно выбрать в виде  [c.177]

В работе Морлэнда [76] в рамках плоского напряженного состояния рассмотрена задача о качении жесткого цилиндра с постоянной скоростью по однородному изотропному вязкоупругому полупространству. Скорость качения полагалась достаточно малой, так что инерционные эффекты не учитывались кроме того, касательные силы на поверхности контакта считались отсутствующими и, таким образом, контактная деформация была обусловлена лишь распределением нормального давления. Длина линии контакта полагалась малой по сравнению с диаметром движущегося цилиндра. Выведены интегральные выражения для перемещений и напряжений в вязкоупругом полупространстве. Математически задача свелась к совместному решению двух пар двойных интегральных уравнений относительно некоторых вспомогательных функций с ядрами, содержащими косинус и синус. Решение этих уравнений осуществлялось путем разложения искомых вспомогательных функций в бесконечные ряды по функциям Бесселя, в то время как для определения коэффициентов ряда требовалось решить бесконечную систему алгебраических уравнений. Если использована связь искомой функции контактного давления с найденными вспомогательными функциями и учтено, что распределение давления не имеет особенностей на краях контактной зоны, то окончательный вид распределения контактного давления представим тригонометрическими рядами. Полученные теоретические результаты проиллюстрированы числовым примером, когда реологические свойства полупространства характеризуются одним временем ретордации. Расчеты дают картину несимметричного распределения нормального давления, являющегося следствием влияния фактора времени.  [c.402]

Будем рассматривать, как основные переменные, элементы Пуанкаре (13.60) и предположим для простоты, что возмущающая функция / не зависит от времени. Тогда, если движение рассматриваемой точки принадлежит к эллиптическому типу, то Я, как это уже неоднократно отмечалось, будет периодической функцией от средней аномалии I, или от средней долготы X, 1 может быть разложена в ряд Фурье, расположенный по синусам и косинусам целых кратностей средней аномалии. Коэффициенты этого разложения будут некоторыми функциями от остальных элементов Пуанкаре, т. е. от Л, эксцентрических элементов т] и облических элементов р, д. Мы покажем те перь, что эти коэффициенты разложимы по целым, положительным степеням величин  [c.697]

Введение. Методы, изложенные в гл. I, достаточны для вычисления координат планеты в эллиптической орбите для любого момента времени по элементам этой орбиты. Для различных приложений в небесной механике необходимо иметь в распоряжении методы, которые позволят разложить координаты и функции от координат в эллиптической орбите в периодические ряды. При движении по эллипсу все конечные и непрерывные функции от координат после полного обращения тела возвращаются к исходным значениям. Поэтому такие функции разложимы в периодические ряды по любой непрерыно возрастающей угловой переменной, которая за время полного обращения тела увеличивается на 2л. Угловыми переменными, представляющими в этой связи особый интерес, являются средняя аномалия I, эксцентрическая аномалия и и истинная аномалия /. Они не являются единственными аргументами, которые могут быть рассмотрены в некоторых приложениях используются другие аргументы. Функциями, которые представляются наиболее естественными для этой цели, являются пли четные, или нечетные периодическпе функции от этпх переменных, порождающие либо ряды косинусов, либо ряды синусов. Поскольку обычно удобнее оперировать степенными рядами, чем тригонометрическими разложениями, то полезно познакомиться с разложениями в экспоненциальной форме.  [c.58]

Важное свойство четырех функций, которые были разложены в ряды Фурье с кратными I в качестве аргументов и степенными рядами по е в качестве коэффициентов, заключается н том, что самая низкая степень е, входяп ая в коэффициент при синусе или косинусе, равна кратности I в аргументе этого члена. Степенные ряды идут далее по степеням е , так что в коэффициент при косинусе или синусе нечетного аргумента входят только нечетные степени е, а в коэффициенте члена с четным аргументом встречаются только четные степени е. Это свойство тесно связано со свойствами разложений бесселевых функций. Оно впервые было особо отмечено Даламбером. По этой причине Браун назвал его даламберовой характеристикой.  [c.74]

Можно видеть, что форма осцилляций величины (как функции 1/Я) будет, вообще говоря, совершенно отличной от формы осцилляций Л/, поскольку коэффициенты / (гХ) могут существенно отличаться друг от друга и поскольку при нечетных значениях к синус в формуле (3.30) превращается в косинус того же аргумента в формуле (3.31). В общем случае для восстановления первоначальной формы осцилляций (3.30) выходной сигнал как функцию 1/Я нужно разложить в ряд Фурье, разделить каждый коэффициент на J r ) и вновь синтезировать, взяв все компоненты с соответствующими фазами 0 , определенными при разложении. Однако в частном случае достаточно слабой модуляции коэффициенты JЛr ) пропорциональны и вид осцилляций величин Vf и d M/dH в точности совпадает на самом деле нетрудно проверить, что в этом пределе выражение (3.31) сводится как раз к /г-му слагаемому формулы (3.20). Практически в условиях слабой модуляции амплитуды высших гармоник слишком малы, чтобы их можно было использовать. Таким образом, непосредственно записать без искажений можно только осцилляции величины dM/dH (и, возможно, d M/dH ) при детектировании на частоте со (или 2оо) и при малой амплитуде модуляции. Легко показать, что, для того чтобы коэффициент У,(гХ) отличался от (УгУХ менее чем на 1%, величина гХ должна быть меньше 0,28 это и есть критерий достаточно слабой модуляции, при которой зависимость величины 1> верно воспроизводит зависимость dM/dH.  [c.143]


Рассмотрение общей задачи о распространении импульса произвольного вида очень упрощается тем, что любую функцию можно представить в виде суммы (вообще говоря, с бесконечным числом членов) некоторых определенных функций. Физически это означает, что произвольный импульс может быть представлен как сумма (бесконечно большого числа) импульсов определенного вида. Подавляющее большинство приемных устройств подчиняется принципу суперпозиции, который означает, что результат нескольких одновременных воздействий представляет собой просто сумму результатов, вызванных каждым воздействием в отдельности. Принцип суперпозиции применим в том случае, когда свойства принимающей системы не зависят от того, находится ли она уже под действием принимаемого возбуждения или нет, а эта независимость всегда имеет место, если воздействие не становится слишком сильным ). Поскольку принцип суперпозиции применим, мы можем заменить произвольный импульс суммой его слагающих и рассматривать действие каждой слагаюпгей отдельно. Рациональный выбор этих слагающих, т. е. рациональный выбор метода разложения сложного импульса, позволяет чрезвычайно упростить рассмотрение задачи. Таким рациональным разложением является разложение на монохроматические волны, т. е. представление произвольной функции в виде совокупностей косинусов и синусов, введенное Фурье. Согласно теореме Фурье любая функция ) может быть представлена с какой угодно точностью в виде суммы синусоидальных и косинусоидальных функций с соответственно подобранными амплитудами, периодами и начальными фазами. При этом, если исходная функция периодична (с периодом Т), то периоды слагающих синусов и косинусов находятся в простом кратном отношении Т, 1 ,Т, /.1Т,. .. (представление в виде ряда Фурье). Если же функция не периодична, то в разложении содержатся не только кратные, но и все возможные периоды (представление в виде интгг-  [c.32]

Разложения (111) проще, чем (108), так как функции Xi Q) м t/i(0) представляются тригонометрическими рядами только по косинусам, а J 2(0) и i/2(0) —только по синусам. Кроме того, для определения функций j (0) и у(0) в интервал О 02л достаточно знать разложения Х](0), X2IQ), yi(Q), г/г(0) в интервале О<0<л, так как из (108) и (111) следуют выражения  [c.240]

Так как все функции X, У, Хв в уравнениях (3.17) не содержат в своих разло.женпях членов ниже второго порядка относительно X, у, х, то правые части уравнений (3.19 ) будут голоморфными функциями величин г, г , Хд,. . ., г , уничтожающимися при одновременном равенстве все этих величин нулю и коэффициенты разложений которых суть периодические функции величины О, которые всегда можно представить в виде конечных рядов косинусов и синусов целых кратностей О.  [c.137]

См. разложения степеней синуса и косинуса ио таким же функциям кратных дуг, например, в справочнике И М. Р ы ж и к и И. С. Г р а flui т е й н, Таблицы интегралов, сумм, рядов и произведений , Физматгиз, 1963.  [c.156]


Смотреть страницы где упоминается термин Синус функция, разложение в ряд : [c.114]    [c.115]    [c.19]    [c.138]    [c.436]    [c.360]    [c.291]    [c.137]    [c.617]    [c.209]    [c.443]   
Основы метрологии, точность и надёжность в приборостроении (1991) -- [ c.137 ]



ПОИСК



Разложение сил

Ряд по синусам

Функция Разложение



© 2025 Mash-xxl.info Реклама на сайте