Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кривошипно-шатунные Сила инерции

В обычном кривошипном прессе силы инерции создаются массой комплекта деталей ползуна со шта. 1но. 1,. массой шатуна и, наконец, массой кривошипа и щек коленчатого вала.  [c.27]

Масса ползуна 3 кривошипно-ползунного механизма равна /7 g = 0,4 кг. Подобрать массы пц и шатуна ВС и кривошипа АВ таким образом, чтобы главный вектор сил инерции всех звеньев  [c.94]

Определить массы противовесов Шщ и т , которые необходимо установить на кривошипе АВ и шатуне ВС для полного уравновешивания главного вектора сил инерции всех звеньев кривошипно-ползунного механизма, если координаты центров масс  [c.94]


К циклически нагруженным относятся соединения, подвергающиеся действию пульсирующей или знакопеременной силы (давление рабочих тазов в цилиндрах поршневых двигателей и компрессоров, силы инерции движущихся масс в головках шатунов и подшипниках кривошипно-шатунных механизмов). I  [c.425]

На рис. 11.11 изображена схема инерционной водоподъемной установки с приводом от ветродвигателя. Ветровое колесо вращает кривошипно-шатунный механизм, который сообщает возвратно-поступательное движение водоподъемной трубе. При движении ее вниз сила инерции воды в трубе направлена вверх. В результате над обратно-приемным шаровым клапаном, расположенным в нижней части трубы, давление понижается, он открывается и вода из колодца поступает в трубу. Из трубы она отводится по гибкому рукаву и трубопроводу в запасной резервуар.  [c.126]

Рис. 164. Силы инерции кривошипно-шатунного механизма Рис. 164. Силы инерции кривошипно-шатунного механизма
Частичное уравновешивание сил инерции механизма. В подавляющем большинстве случаев выполнить полное уравновешивание сил инерции механизма конструктивно сложно. Поэтому в практике широко используют частичное уравновешивание сил инерции механизмов. Методы такого уравновешивания рассмотрим на примере кривошипно-шатунного механизма.  [c.352]

Рис. 253. Уравновешивание сил инерции первого порядка в кривошипно-шатунном механизме Рис. 253. Уравновешивание сил инерции первого порядка в кривошипно-шатунном механизме
Силы инерции звеньев машин, совершающих плоскопараллельное или возвратно-поступательное движение, уравновешиваются посредством рационального соединения нескольких механизмов (в многоцилиндровых двигателях внутреннего сгорания, компрессорах и др.) или с помощью противовесов, помещаемых на вращающиеся звенья. Уравновешивание противовесами рассмотрим на примере кривошипно-шатунного механизма (рис. 9.5, а). Масса шатуна приближенно может быть заменена двумя эквивалентными массами /Пш и /Пш, сосредоточенными в точках Л и В. Величины этих масс определяются из выражений  [c.192]


В зависимости от типа динамических схем машины различают с жестким возбуждением от шатунно-кривошипного или иного механизма, с мягким прямым возбуждением с непосредственной передачей усилия на испытуемый объект, с мягким косвенным возбуждением и промежуточной упругой системой, с нагружением силами инерции собственных распределенных масс объекта [10].  [c.156]

Вторая глава статьи посвящена построению сил инерции шатуна. Проведя достаточно подробное графическое исследование, Л. В. Ассур приходит к выводу, что ...в обыкновенном шатунном механизме всегда наблюдается удар в крейцкопфной головке, и избежать его вряд ли имеется возможность, не изменяя суш,ественно конструктивных форм. Между тем в кривошипной головке представляется полная возможность дифференцировать удар и получить плавный поворот вектора полных давлений . И далее Сопоставляя последние выводы со сказанным в конце первой главы, мы придем к заключению, что наибольшей плавности хода мы достигнем, если перенесем неизбежный удар к крейцкопфной головке в мертвую точку, при этом удар в параллелях будет отсутствовать, а критический момент для кривошипной головки будет, но-видимому, достаточно далеко выдвинут за мертвую точку..., чтобы удар и здесь стал невозможен .  [c.34]

Зубчатые колеса J и 2, находящиеся в зацеплении, вращаются вокруг неподвижных осей В и Л. С колесами 1 п 2 жестко связаны кривошипы Ь и а, входящие во вращательные пары D и С с шатунами 3 н 4. Шатуны 3 п 4 входят во вращательные пары F и Е с Т-образным ползуном 5, скользящим в неподвижной направляющей d, ось которой перпендикулярна к оси X — X. Размеры звеньев меха-низма удовлетворяют условиям Лх = 2 — ГД Г1 и Га — радиусы начальных окружностей колес I и 2, АС — BD, СЕ = DF, EF = 2г. Углы наклона прямых АС и BD к оси х — х всегда равны и симметричны. При вращении колеса 1 ползун 5 движется возвратно-поступательно по закону ползуна центрального кривошипно-ползунного механизма. В данной конструкции механизма при равных массах колес / и 2 и шатунов 4 и 3 отсутствуют давления от сил инерции звеньев на направляющую d.  [c.130]

Центробежные силы инерции в плоскости каждого цилиндра можно уменьшить уравновешиванием неуравновешенных вращающихся частей с помощью противовесов. Силы инерции 1-го и 2-го порядков, создаваемые возвратно-поступательно движущимися частями кривошипно-шатунного механизма двигателей, нельзя уменьшить простой установкой вращающихся противовесов, так как эти силы действуют только по осям цилиндров двигателя.  [c.194]

На систему действуют вертикальный возмущающие силы силы давления газов и Р , приложенные к и Рр к т -, приведенная сила инерции поршня и кривошипно-шатунного механизма Р , приложенная к  [c.201]

Пример. Для кривошипного механизма, двигателя (рис. 58) подсчитать силу инерции шатуна Уз и определить ее плечо к при  [c.100]

Пример. Найти касательные усилия от сил инерции шатуна кривошипного механизма, воспользовавшись данными примеров,  [c.108]

Для кривошипного механизма оно будет при угле ф, для которого кривошип ОА становится перпендикулярным к шатуну АВ. Как известно из кинематики механизмов (т. 1, гл. V), в указанном положении кривошипного механизма скорость поршня достигает приближенно наибольшей величины и, следовательно, ускорение его обращается почти в нуль [это следует также и из уравнения (31) для U jl. Поэтому будет равна приближенно нулю и сила инерции шатуна в точке В, следовательно, все силы инерции действительно распределятся по треугольнику А А В. Шатун будет работать на изгиб как балка, опертая концами Л и В и нагруженная погонной нагрузкой, распределенной по треугольнику. Интенсивность распределения погонной нагрузки от сил инерции в любом сечении равна  [c.112]

Пример. Подсчитать максимальный изгибающий момент от сил инерции в шатуне рассмотренного выше кривошипного механизма  [c.113]

Силы инерции кривошипно-шатунного механизма одноцилиндрового поршневого двигателя  [c.124]

Аналитическое исследование движения кривошипно-шатунного механизма. Остановимся сначала на случае поршневой машины с кривошипно-шатунным механизмом. Вопрос об учете сил инерции в этом  [c.124]


Некоторые задачи по уравновешиванию уже были рассмотрены в пп. 22 и 23. Но там в качестве объекта уравновешивания был рассмотрен кривошипно-шатунный механизм поршневого двигателя, для которого можно было составить аналитические выражения для сил инерции его различных звеньев и всего механизма в целом. Уже на примере этого механизма выявилась целесообразность для решения задачи по уравновешиванию иметь выражения сил инерции в виде гармонических рядов. Эти гармонические ряды были получены из точных аналитических зависимостей для элементов движения звеньев кривошипно-шатунного механизма, в частности для ускорений ползуна и центра тяжести шатуна. Путем разложения в ряд выражения для косинуса угла ф наклона шатуна, входящего в эти формулы в виде  [c.160]

Кривошипно-шатунные механизмы — Расчёт — Графо-аналитический метод 13 — 375 Силы инерции 7 — 375  [c.186]

Силы инерции кривошипно-шатунного механизма действуют на связи, палец кривошипа и параллель. В точке А (параллель) возникает реакция Уа, в точке В (палец кривошипа) — реакции Ув и Хв (фиг. 1).  [c.375]

Способы уменьшения колебаний фундаментов. 1) Уравновешивание возмущающих нагрузок м а ш и н ы. Устройство противовесов даёт возможность частично уравновесить силы инерции первого порядка кривошипно-шатунного механизма.  [c.540]

Нагрузка на подшипники коленчатого вала двигателя создается силами трех родов от давления газов на поршень, от сил инерции поступательно движущихся масс и сил инерции вращающихся масс кривошипно-шатунного механизма.  [c.293]

При разложении по звеньям кривошипно-шатунного механизма равнодействующих сил рабочих газов и сил инерции поступательно движущихся масс мы получаем слагающие, находящиеся в одной плоскости, а именно центральной плоскости вращения кривошипа.  [c.293]

Для уточнения разности между значениями и У мы определили момент инерции маховика машинного агрегата с кривошипно-шатунным механизмом. Были приняты следующие условия полезное сопротивление исполнительного звена изменяется по линейному закону, приведенная движущая сила — постоянная.  [c.122]

В настоящей статье приводится исследование движения центра масс подвижных звеньев центрального шатунно-кривошипного механизма, определяется годограф и центр неуравновешенных сил механизма и обосновывается новая схема приближенного уравновешивания в механизме одним противовесом суммарной силы инерции и первой гармоники суммарного инерционного момента.  [c.399]

Моменты от сил инерции движущихся масс кривошипно-шатунного механизма (следует учитывать только при определении гармоник низших порядков—от 1-н до 4-и)  [c.337]

Рассмотрим задачу балансировки одноцилиндрового двигателя с кривошипно-шатунным приводом (рис. 2.26). Очевидным решением задачи является применение балансирующего противовеса, вращающегося относительно оси кривошипа и создающего силу инерции, равную по величине, но противоположную  [c.271]

Следовательно, мы всего лишь изменили направление действия первичной силы на 90°. Задача осталась практически не решенной еще и потому, что вращающийся противовес не оказал вообще никакого влияния ни на вторичную силу (силу 2ф), ни на высшие гармоники. Итак, одноцилиндровый двигатель с кривошипно-шатунным приводным механизмом нельзя сбалансировать при помощи вращающегося противовеса, и, следовательно, нужно искать иные методы сведения к нулю силы инерции.  [c.272]

В движущихся деталях кривошипно-шатунного механизма возникают силы II моменты сил инерции  [c.245]

В качестве примера применения вспомогательного рычага Жуковского при определении уравновешиваюш,его момента Му рассмотрим кривошипно-ползунный механизм, к поршню которого приложена сила Рз — равнодействуюш,ая давления газов и силы инерции поршня, а к шатуну — сила инерции и момент сил инерции М,-2 (рис. 17.13).  [c.395]

Стержень шатуна кривошипно-шатунного механизма проверяют на устойчивость от осевой сжимающей силы, причем в плоскости движения шатуна концы его считают шарнирно опертыми, а в плоскости, нормальной к плоскости движения, - жестко заделанными. При каком соотношении между осевыми моментами инерции шатуна обеспечивается его равноустойчивость в указанных плоскостях  [c.203]

Закономерности движения кривошипа распространяются и на движение противовесов, укрепленных на кривошипе, поскольку они установлены симметрично относительно оси кривошипного механизма. Обычно ось противовеса совпадает с осью кривошипа н, следовательно, момент сил инерции кривошипа или противовесов относительно оси вращения равен нулю. Определим силы инерции шатуна. Представим себе шатун, который разделен рядом смежных сече шй, перпендикулярных к оси шатуна, на ряд тонких материальных пластинок. Пусть центры тяжести их лежат на оси шатуна. Масса одной такой элементарной пластинки равна dm. Если обозначить величину равнодействующей силы инерции шатуна в направлении оси через Son и лерпендикулярно к ней через S f, то согласно уравнению (3.12 а) получим  [c.129]

Результирующие силы инерции в кривошипно-коромыс-ловом механизме. Пусть кривошип AqA кривошипно-коромыс-лового механизма (рис. 318), в котором шатун коромысло представляют собой призматические стержни, вращается с постоянным числом оборотов и центр тяжести кривошипа совпадает с центром вращения Ло.  [c.192]

Силы инерции в крмвошипно-шатунном механизме. При уравновешивании сил инерции шатунно кривошипных механизмов встречаются следующие варианты расположения цилиндров паровоза (табл. 1).  [c.375]

При расчёте лесорам (особенно по кривошипно-шатунному механизму) су1цественно важное значение имеет оценка сил инерции.  [c.706]

Задерживающий механизм бойка в электромеханическом молотке осуществляет более равномерную загрузку электродвигателя. К. Н. Шмаргунов [14] в качестве задерживающего механизма применил электромагнит, утверждая, что ни один механический задерживающий механизм не может конкурировать с электромагнитом. Однако в результате испытаний опытного образца-молотка оказалось, что электромагнит является элементом относительно дорогим и утяжеляет конструкцию молотка. Поэтому автор предложил пружинный молоток КНШ-2, в котором использовал силы инерции кривошипно-шатунного механизма. Молотки КНШ были сняты с серийного производства, так как имели недостаточную энергию удара, а рабочие пружины, касательные напряжения которых изменялись по симметричному циклу, находились в тяжелом режиме ударной нагрузки и быстро выходили из строя. Наиболее удачно вопрос захватывающего механизма бойка был решен фирмой Wolf (Англия) в молотке с пружинным ударным механизмом [5]. Достоинством молотка является простота конструкции, надежность в работе, малые вес и габариты. К числу недостатков молотка можно отнести неравномерную загрузку электродвигателя (взвод пружины осуществляется при повороте кривошипа на 180 ), несовпадение центра тяжести молотка с осью бойка, большой вес электродвигателя по сравнению с весом всего молотка. Оригинальное решение захвата бойка при обратном ходе поршня дано инж. Батуевым Н. М. для безредукторного молотка типа ЭМ-6. Описание рабочего процесса молотка освещено в работах П],[6], [7], [9]. Безредукторные электронневматические молотки приняты в серийное производство. К числу недостатков их следует отнести несимметричность молотка (некоторое неудобство формы молотка) и потери энергии в электродвигателе на холостом ходу. 180  [c.180]


Согласно табл. 1 и 3 / тр в отличие от F (а) не оказывает суш ествен-ного влияния ни на длительность (но углу ос) разомкнутого состояния кинематической цепи, ни на скорость относительного движения элементов кинематической пары при восстановлении контакта, а действие изменения величин модулей указанных сил идентично с точки зрения уменьшения количества участков движения с разрывом кинематической цепи. При проведении расчетов было выбрано значение Р — 4647,5 к, соответству-юш ее максимальной силе инерции, действующей на массу (табл. 3). В этом случае кривошипно-ползунный механизм с зазором в динамическом отношении ведет себя подобно идеальному механизму до углов поворота а = л. При этом зазор полностью выбран, и график зависимости реакции в паре кривошип — шатун совпадает с графиком реакции в идеальном механизме [4].  [c.127]

W 4. Шатуны 3 тл 4 входят во вращательные пары F и Е с Т-образным ползуном 5, скользящим в неподвижной направляющей d, ось которой перпендикулярна к оси X — X. Размеры звеньев механизма удовлетворяют условиям < - =г г, где r , к г— радиусы начальных окружностей колес 1 2, A =BD, E=DF. Углы наклона прямых АС и BD к оси X — X всегда равны и симметричны. При вращении колеса 1 ползун 5 движется возвратно-поступательно по закону ползуна центрального кривошипно-ползун-ного механизма. В данной конструкции механизма при равных массах колес / и 2 и шатунов 4 -R 3 отсутствуют давления от сил инерции звеньев на направляющую d.  [c.127]


Смотреть страницы где упоминается термин Кривошипно-шатунные Сила инерции : [c.289]    [c.365]    [c.7]    [c.132]    [c.124]    [c.128]    [c.129]    [c.647]    [c.273]   
Справочник машиностроителя Том 4 (1956) -- [ c.488 ]



ПОИСК



Кривошипно-шатунные Шатуны

Силы инерции

Силы инерции движущихся частей кривошипно-шатунного механизма

Силы инерции кривошипно-шатунного механизма и силы давления газов

Силы инерции кривошипно-шатунного механизма с учетом массы шатуна

Силы инерции поступательно-движущихся частей кривошипно-шатунного механизм

Шатун

Шатунно-кривошипный механизм определение определение силы инерции поступательно-движущихся частей его

Шатуны силы инерции



© 2025 Mash-xxl.info Реклама на сайте