Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение рентгеновское — Коэффициент

Большой интерес представляют методы, не требующие снятия слоев. В этом случае для получения данных о структуре металла на разной глубине можно изменять длину волны рентгеновского излучения, меняя тем самым его проникающую способность, или изменять угол падения лучей. Эффективная глубина проникновения лучей в различные металлы при применений разных излучений зависит от коэффициента поглощения рентгеновских лучей в веществе, его плотности и длины волны излучения.  [c.37]


Характеристики 1 кн. 237 Излучение рентгеновское — Коэффициент  [c.317]

Электроннолучевая плавка позволяет долго выдерживать жидкий металл в глубоком вакууме и избавиться при этом от многих летучих примесей. Принцип ее нетрудно понять, рассматривая схему рнс. 139. Поток электронов, испускаемый катодом из вольфрама или тантала, которому сообщен высокий отрицательный потенциал, проникает через отверстие заземленного анода, он фокусируется электромагнитной катушкой подобно тому, как свет фокусируется линзами, и направляется на конец заготовки. Высокая кинетическая энергия электронов при ударе превращается в теплоту, которая нагревает и плавит металл. Система для разгона и фокусировки электронного пучка — электронная пушка— работает в высоком вакууме — порядка 133,3-10 — 133,3-10- Н/м . Наилучшее использование энергии достигается при напряжении 30—35 кВ, когда доля побочно возникающего рентгеновского излучения минимальна, а коэффициент полезного  [c.362]

Все оценки способности рентгеновских лучей поглощаться и их жесткости очень затрудняются тем, что из трубки выходят очень неоднородные рентгеновские лучи, т. е. смесь лучей различной жесткости. Пропуская их через поглощающее вещество, мы задерживаем более мягкие лучи, получая таким образом более однородный пучок. Этот метод фильтрования довольно груб и не обеспечивает получения строго однородных монохроматических лучей. В настоящее время мы располагаем приемами монохроматизации, подобными применяемым в оптике обычных длин волн, т. е. методами, при использовании которых испускается почти монохроматическое рентгеновское излучение, подвергающееся дальнейшей монохроматизации при помощи дифракции. Таким образом получаются лучи, не уступающие по монохроматичности световым лучам, и для них коэффициент поглощения имеет совершенно определенный физический смысл. Для таких монохроматических лучей он зависит от плотности р поглощающего вещества и грубо приближенно может считаться пропорциональным плотности. Более точно поглощение определяется числом атомов поглощающего вещества на единице толщины слоя. При переходе же от одних атомов к другим поглощение быстро растет с увеличением атомного веса, правильнее, атомного номера Z, будучи пропорционально кубу атомного номера.  [c.406]

Коэффициент ослабления пропорционален приблизительно а также Z по мере уменьшения длины волны рентгеновского излучения падает и ц. Однако при некоторых значениях волны (Хкр) коэффициент ослабления резко возрастает (край полосы поглощения), а затем вновь убывает с уменьшением длины волны по тому же закону.  [c.966]


Для контроля твердости материалов применяют все основные методы не-разрушающего контроля — акустические, магнитные, электромагнитные и рентгеновские. В основу этих методов положено измерение определенных физических констант модуля упругости, плотности и удельного волнового сопротивления — для акустических методов магнитной проницаемости, коэрцитивной силы и остаточной индукции — для магнитных методов магнитной проницаемости и удельной электрической проводимости — для электромагнитных методов линейного коэффициента ослабления, коэффициента рассеянного излучения и плотности материала — для рентгеновских и гамма-методов. Эти физические константы находятся в функциональной зависимости от твердости материала.  [c.272]

ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]

Развитие эксимерных лазеров позволило, как мы видели, освоить область ближнего УФ-излучения в диапазоне 100...350 нм. Дальнейшее продвижение в коротковолновую (рентгеновскую) область спектра принципиально затруднено из-за сильного падения коэффициента усиления с ростом частоты излучения. Это обстоятельство требует резкого увеличения энергии и мощности накачки по мере укорочения длины волны генерации. Не менее важным является вопрос о выборе активной среды. Длины волн 10...1 нм соответствуют энергии 100... 1000 эВ. Переходы с такими энергиями можно  [c.182]

Коэффициент поглощения рентгеновского излучения высокой энергии на краю спектра поглощения равен  [c.77]

Углепластики незначительно поглощают рентгеновские лучи, обладают высокой жесткостью и поэтому применяются в рентгеновской аппаратуре. В табл. 6.9 приведены коэффициенты поглощения рентгеновских лучей различными элементами. Из таблицы видно, что углерод почти в девять раз меньше поглощает рентгеновские лучи, чем алюминий. Коэффициенты пропускания и рассеяния рентгеновских лучей различными листовыми материалами, ориентированными перпендикулярно направлению рентгеновского излучения, приведены в табл. 6.10. Из таблицы видно, что углепластик по сравнению с алюминием приблизительно в 5 раз меньше поглощает рентгеновские лучи и в 2,5 раза меньше их рассеивает, т. е. является весьма хорошим материалом для рентгеновской аппаратуры.  [c.226]


Доза излучения — это поток излучения на единицу площади. Такое определение имеет ясный физический смысл, однако действие рентгеновских лучей на человеческий организм при равной энергии существенно зависит от качества (жесткости) излучения. Биологическое действие вызывает именно та часть энергии, которая поглощается. Поэтому введено понятие поглощенная доза (ПД), или доза, измеряемая энергией (поглощенной) на единицу массы (Дж/кг). Специальной единицей ПД является рад (1 рад=100 эрг/г=10- Дж/кг). В расчетах поглощенной дозы учитывают средний состав мягкой биологической ткани 76,2 % О 11,1 % С 10,1 % Н 2,6 % (по массе) N. В нормах радиационной безопасности используют понятие эквивалентная доза (Экв. Д), которое с помощью коэффициента качества учитывает зависимость неблагоприятных биологических последствий облучения от качества (жесткости) излучения. Специальной единицей Экв. Д является бэр, равный 1 рад/<Э, где Q — коэффициент качества для рентгеновских лучей 0=1. Нормами радиационной безопасности (НРБ—76) устанавливается предельно допустимая доза (ПДД) — наибольшее значение индивидуальной Экв. Д за год, которое при равномерном воздействии в течении 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами. Для лиц, непосредственно работающих с источниками ионизирующих излучений в условиях облучения всех частей тела, установлена ПДД, равная 5 бэр в год [33].  [c.123]

Значения коэффициента качества k устанавливаются на основании радиобиологических экспериментов и приводятся в специальных справочных таблицах. Если энергетический состав излучения неизвестен, то при хроническом облучении в дозах, не превышающих значительно установленных безопасных норм, можно использовать следующие значения коэффициента качества для электронов, рентгеновского и гамма-излучения для тепловых нейтронов А 3 для нейтронов, протонов и более тяжелых однозарядных частиц для а-частиц, многозарядных частиц и частиц неизвестного заряда fe 20.  [c.68]

В связи с этим коэффициент отражения рентгеновского излучения отличен от нуля лишь при почти скользящем падении излучения на поверхность, и в формулы Френеля удобнее ввести вместо угла падения 0 угол скольжения 0 = д/2 — 0  [c.13]

Необходимо для области длин волн рентгеновского излучения провести сравнительные оценки R, Rs и Rp. Расчеты коэффициентов отражения и оценка выражений для Rs и Rp были проведены в работе [20]. Ее авторы показали, что в области скользящих углов падения различием между и Rp можно пренебречь, поскольку оно составляет 10 —10 в диапазоне длин волн 10—0,1 нм для области углов ПВО. К аналогичному выводу пришли авторы работы [11], анализируя необходимость учета поляризации излучения в более длинноволновой области спектра. Было показано, что для б = у = 0,2 (такими оптическими постоянными характеризуется золото в области Я 19 нм) в интервале углов падения от 6° до 25° компоненты Rs и различаются на 3—5 %. Таким образом, в области малых углов скользящего падения можно не учитывать поляризацию рентгеновского излучения при отражении и использовать при расчетах формулу Френеля (1.7).  [c.15]

Промежуточное положение области мягкого и ультра-мягкого рентгеновского излучения, лежащей между достаточно хорошо изученными областями — жесткой рентгеновской и вакуумной ультрафиолетовой, делает возможным применение широко известных. методов определения оптических констант, какими являются в области жестких рентгеновских лучей метод пропускания и в областях видимой и ультрафиолетовой измерение угловых зависимостей коэффициента отражения. Причем методы пропускания и измерения спектральных зависимостей коэффициента отражения существенным образом используют соотношения Крамерса—Кронига.  [c.20]

Первой из них является окисление поверхности, которое сказывается на результатах метода отражения. Как будет показано далее, глубина проникновения мягкого рентгеновского излучения очень мала и составляет для различных материалов единицы или десятки нанометров. Поэтому метод измерения отражения оказывается очень чувствительным к состоянию поверхностного слоя. Например, для А1 толщина окисной пленки на поверхности может достигать 10 нм, что и приводит к завышению значения коэффициента отражения.  [c.25]

Напомним вначале, каковы отражающие свойства плоской идеально резкой границы [см. формулу (2.1)]. Согласно формулам Френеля в отсутствие поглощения в рентгеновском диапазоне имеет место эффект полного внешнего отражения (ПВО), т. е. коэффициент отражения Вр = 1, если угол скольжения не превосходит критического 9 < 0 = 1/1 —е . При наличии поглощения коэффициент отражения при нулевом угле скольжения также равен Г, но при увеличении угла сразу начинает убывать (см. рис. 1.1). В частности, для з-поляризованного излучения и малых углов скольжения из формул Френеля (1.4), (1.6) имеем  [c.50]

Выражение (2.47) показывает, что по измеренной индикатрисе рассеяния Ф (0, ф) легко определяется спектральная корреляционная функция Хв ( ) связанная с х (р) преобразованием Бесселя (2.46). При этом, если оптические свойства вещества е . (со) (а следовательно, и коэффициенты Rp и Т) известны достаточно хорошо, то измерения функции Хв ( ) можно проводить, используя зондирование поверхности излучением с различной длиной волны — от видимых до рентгеновских, что значительно повышает достоверность получаемых результатов. Обсудим этот вопрос более подробно.  [c.61]

В гл. 6 и 7 будут рассмотрены принципы действия и основные характеристики традиционных типов рентгенооптических устройств. Все они могут быть объединены термином о п-тика скользящего падения. До недавнего времени необходимость использования в рентгеновском диапазоне исключительно оптики скользящего падения была связана с тем, что коэффициент отражения рентгеновского и мягкого рентгеновского (МР) излучения от любого материала отличен от нуля лишь в узком интервале углов скольжения 8 0с = т/ Ре (1 — е) (см. гл. 1). Для примера на рис. 3.1 показаны зависимости коэффициента отражения МР-излучения с длиной волны X — 9,34 нм от угла падения ф для двух материалов молибдена и бора (ф = = л/2—0).  [c.75]


Ершов О. А. Отражение ультрамягкого рентгеновского излучения и связь коэффициентов отражения с коэффициентами поглощения Автореф.. .. дисс. канд. физ.-мат. наук. — Л. ЛГУ, 1966.— 111 с.  [c.44]

Эквивалентная доза излучения определяет биологическое воздействие излучения на организм человека. Эквивалентная доза излучения равна произведению поглощенной дозы >п излучения в биологической ткани на коэффициент качества К этого излучения DjKB = KDn- Коэффициент качества К сл) жит для сравнения различных видов ионизирующего излучения по ожидаемому биологическому эффекту. Например, для Р-, рентгеновского и у-излучений К = для потока нейтронов с энергией до 10 МэВ К = 10, а для а-излучений с энергией до 10 МэВ К = 20.  [c.249]

Выбор источника излучения (рентгеновского аппарата и рентгеновской трубки) определяется радиографическими свойствами материала изделия, его толщиной, а также конкретными условиями и требованиями, предъявляемыми к контролю. Как показано в работах [3, 4], полиэтилен, полистирол и полиамиды среди полимерных материалов имеют самью низкие средние линейные коэффициенты ослабления ц рентгеновского излучения. Поэтому для контроля качества сварных соединений из этих материалов необходимо работать с очень мягким излучением. В этом случае лучше работать на аппарате РУП-60-20-1 или на РУП-150-10-1 (РУП-150/300-10-1) с острофокусной трубкой 0,3 БПВ-6-150.  [c.132]

Фактор поглощения. Рентгеновское излучение, рассеянное кристаллом, значительно поглощается в нем, при этом поглощение зависит от угла рассеяния 0, плотности вещества р и линейного коэффициента рассеяния ji. При расчете интенсивности это поглощение учитывают, вводя в формулу для интенсивности множитель (фактор) поглои ения Ф=Ф(в, ц, р). Множитель поглощения зависит от геометрии кристалла.  [c.47]

Линейный коэффициент ослабления fi излучения в материале контролируемого изделия (табл. 2) определяет проникающие свойства излучения и выявляемость дефектов. Для выявления дефектов минимальных размеров, т. е. для получения высокой чувствительности, следует использовать низкоэнергетическое рентгеновское и у-из-лучения и высокоэпергетическое тормозное излучение ускорителей с большими значениями ц.  [c.309]

Усиливающее действие металлических экранов, используемых при контроле методом прямой экспозиции, определяется вторичными электронами, образующимися в экране при прохождении через него ионизирующего излучения. Экраны изготовляют из фольги тяжелых металлов (свинец, вольфрам, олово и др.), так как она обрспечивает высокие коэффициенты усиления (рис. 8). Для каждого источника ионизирующего излучения материал экрана следует выбирать в зависимости от его энергии, в частности, для рентгеновского излучения целесообразно использовать олово, вольфрам, свинец, для v-излучения —воль-  [c.317]

Специальные цветные радиографк-ческие пленки принципиально ниче л не отличаются от обычных фотоплёнок, но имеют большую чувствительность к рентгеновскому излучению и состоят из двух или трех эмульсио< -ных слоев. Каждый слой имеет свои коэффициент контрастности и чувствительность, благодаря чему достигается определенное изменение цвета и яркости изображения при изменении  [c.335]

Существо метода ПРВТ сводится к реконструкции пространственного рас пределения линейного коэффициента ослабления (ЛКО) рентгеновского излучения по объему контролируемого объекта в результате вычислительной обработки теневых проекций, полученных при рентгеновском просвечивании объекта в различных направлениях. Обнаружение и детальное изучение дефектов в объеме контролируемого изделия осуществляет оператор путем визуального анализа изображений отдельных плоских сечений (томограмм ) реконструированной пространственной структуры ЛКО. Таким образом удается детально контролировать геометрическую структуру и характер объемного распределения плотности и элементного состава материалов без разрушения сложного изделия.  [c.399]

Другие исследователи изучали действие ультрафиолетового и рентгеновского излучения на напряжение ную, коэффициент рассеяния и удельное сопротивление диэлектриков из окиси алюминия [83]. Алокс (99% AI2O3) был облучен рентгеновскими лучами (50 кв) в вакууме 10" мм рт. ст., при этом изменение свойств для переменного тока не было отмечено, но были обнаружены небольшие изменения удельного электросопротивления на постоянном токе. Окись алюминия приобретала высокую электропроводность во время облучения протонами [98].  [c.151]

Пригодность рентгеновской пленки для дефектоскопии определяется ее сенситометрическими характеристиками, чувствительностью и коэффициентом контрастности. Чувствительность и коэффициент контрастности пленки зависят от материала и толщины усиливающих экранов, а также от толщины просвечиваемого материала, так как этим определяется спектр проходящего излучения. На основании экспериментальных данных были построены характеристические кривые для различных оте-честпепных и зарубежных рентгеновских пленок со следующими комбинациями экранов без экрана экран 1П4,5 экран 2П4,5 экран ФПФ (здесь цифры обозначают толщину свинцового экрана в миллиметрах, буква П обозначает пленку, а буква Ф — флюоресцирующий экран с нагрузкой светящегося слоя из вольфрамата кальция в 120 Mzj M ). Определение коэффициента контрастности проводилось по величине тангенса угла наклона наиболее прямолинейного участка характеристической кривой.  [c.335]

СПЕКТРОСКОПИЯ (раздел физики, в котором изучают спектры оптические абсорбпионпая изучает спектры поглощения видимого, инфракрасного и ультрафиолетового света акустическая — совокупность методов измерения фазовой скорости и коэффициента поглощения звуковых волн различных частот, распространяемых в веществе вакуумная — спектроскопия коротковолнового ультрафиолетового и мягкого рентгеновского излучения, в которой применяют вакуумные спектральные приборы лазерная изучает полученные с помощью лазерного излучения спектры испускания, поглощения и рассеяния света мессбауэровская — метод изучения электрических и магнитных полей, создаваемых на атомных ядрах их окружением микроволновая — радиоспектроскопия электромагнитных волн сантиметрового и миллиметрового диапазонов длин волн нелинейная — методы исследования строения вещества, основанные на нелинейных оптических явлениях оптико-акустическая — метод анализа вещества, основанный на изучении спектров поглощения света, возникающих  [c.278]

ФАКТОР <есть причина, движущая сила какого-либо процесса, явления, определяющая его характер или отдельные его черты магнитного расщепления — множитель в формуле для расщепления уровней энергии, определяющий величину расщепления, выраженный в единицах магнетона Бора размагничивающий— коэффициент пропорциональности между напряженностью размагничивающего магнитного поля образца и его намагниченностью структурный—величина, характеризующая способность элементарной ячейки кристалла к когерентному рассеянию рентгеновского излучения, гамма-излучения и нейтронов в зависимости от внутреннего строения ячейки) ФЕРРИМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты ионов, входящих в его состав, образуют две или большее число подсистем (магнитных подрещеток) ФЕРРОМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты атомов или ионов самопроизвольно ориентированы параллельно друг другу ФИЛЬТРАЦИЯ—движение жидкости или газа через пористую среду ФЛУКТУАЦИЯ <есть случайное отклонение значения физической величины от ее среднего значения, обусловленное прерывностью материи и тепловым движением частиц абсолютная — величина, равная корню квадратному из квадратичной флуктуации квадратичная 01ли дисперсия) равна среднему значению квадрата отклонения величины от ее среднего значения относительная равна отношению абсолютной флуктуации к среднему значению физической величины) ФЛУОРЕСЦЕНЦИЯ — люминесценция, быстро затухающая после прекращения действия возбудителя свечения ФОРМУЛА (барометрическая — соотношение, определяющее зависимость давления или плотности газа от высоты в ноле силы тяжести Больнмаиа показывает связь между энтропией системы и термодинамической вероятностью ее состояния Вина устанавливает зависимость испускательной способности абсолютно черного тела от его частоты в третьей степени и неизвестной функции отношения частоты к температуре)  [c.292]


Важнейшими специфическими свойствами стекол являются их оптические свойства светопрозрачность, отражение, рассеяние, поглощение и преломление света. Обычное неокрашенное листовое стекло пропускает до 90 %, отражает примерно 8 % и поглощает около 1 % видимого и частично инфракрасного света ультрафиолетовое излучение поглощается почти полностью. Кварцевое стекло является прозрачным для ультрафиолетового излучения. Коэффициент преломления стекол составляет 1,47—1,96, коэффициент рассеяния (дисперсии) находится в интервале 20—71. Стекло с большим содержанием РЬО поглощает рентгеновское излучение.  [c.510]

Бериллий обладает эффективным сечением захвата тепловых нейтронов, большой проницаемостью для мягкого рентгеновского излучения (в 17 раз больше, чем у алюминия), высокой отражательной способностью, малым коэффициентом линейного расширения, хорошей коррозионной стонко-аью, сравнительно высокой прочностью, но низкой пластичностью. Бериллий имеет уникальный модуль упругости. Если для большинства металлов и промышленных сплавов (за исключением сплавов типа 1420) значение удельного модуля упругости E/(pg) колеблется в пределах (2,3—2,6) 10 км, то удельный модуль упругости бериллия достигает 16,6-10 км, а сплавов бериллия с алюминием и магнием 10,5-10 км (табл. 78). Наряду с ценными техническими свойствами бериллий и его соединения обладают резко выраженными токсическими свойствами. Наиболее токсичными являются химические соединения бериллия, особенно хлористые и фтористые. Аэрозоли и мелкодисперсные частицы бериллия, его сплавов и соединений воздей-  [c.321]

Таблица 6.10. Коэффициенты пропускания и рассеяния рентгеновских лучей различными листовыми материалами, ориентированными перлендикулярно к направлению рентгеновского излучения Таблица 6.10. <a href="/info/785">Коэффициенты пропускания</a> и <a href="/info/14633">рассеяния рентгеновских лучей</a> различными листовыми материалами, ориентированными перлендикулярно к направлению рентгеновского излучения
НО снимать при белом излучении вольфрамового антикатода. Разница концентраций внутри спл1ава, обусловленная сосуществованием двух фаз или ликвацией в микрообъемах в области одной фазы, проявится как разница почернений на фотопленке. Когда составляющие атомы близки по своим атомным номерам, обычно можно выбрать подходящее характеристическое излучение так, чтобы изменение коэффициента поглощения у края полосы поглощения создавало сравнительно большую разницу в поглощающей способности атомов. Этот метод особенно пригоден для сплавов переходных металлов, так как характеристические рентгеновские излучения получаются обычно от элементов, находящихся в периодической системе от хрома до меди. Микрорентгенограммы, получаемые с двумя и более характеристическими излучениями часто дают возможность выявить области, богатые определенной составляющей, так как относительные коэффициенты поглощения для двух веществ могут быть совершенно различными.  [c.246]

Как известно, существует сравнительно узкая область длин волн дальнего вакуумного ультрафиолета и примыкающая к ней область мягкого рентгеновского излучения, благоприятная для проникновения в диапазон размеров < 100 нм. Более короткое излучение сложно использовать из-за генерации рентгеновских фотоэлектронов. Применение этого диапазона длин волн, эксимерных лазеров и брегговских зеркал на основе покрытия Si-Mo, обеспечивающих получение для длины волны 14 нм, коэффициента отражения до 70 %, позволит в ближайшее десятилетие достичь разрешающей способности 50... 100 нм. В частности, компании Intel и IBM в 2001 г. освоили серийный выпуск интегральных схем (130 нм) по технологии, основанной на использовании ArF эксимерно-го лазера.  [c.154]

В то же время из выражения (2,116) находим, что (при Av = 0) 1/стт(0)Avq. На частотах УФ- и ВУФ-диапазонов при умеренных давлениях можно считать, что ширина линии Avo определяется доплеровским уширением. Следовательно [см, (2,78)], Avo Vo, поэтому dPno /dV увеличивается как (если положить Vp л Vo). При более высоких частотах, соответствующих рентгеновскому диапазону, ширина линии определяется естественным уширением, так как излучательное время жизни становится очень коротким (порядка фемтосекунд). В этом случае Avo Vq и dP JdV увеличивается как v . Таким образом, если мы, к примеру, перейдем из зеленой области (Х = 500 нм) всего лишь в мягкий рентген (X л 10 нм), то длина волны уменьшится в 50 раз, а dP op dV увеличится на несколько порядков С практической точки зрения заметим, что многослойные диэлектрические зеркала в рентгеновской области обладают большими потерями и трудны в изготовлении. Основная проблема состоит в том, что в этом диапазоне разница в показателях преломления различных материалов оказывается очень малой. Поэтому для получения приемлемых коэффициентов отражения необходимо использовать большое число (сотни) диэлектрических слоев, а рассеяние света на столь большом числе поверхностей раздела приводит к очень большим потерям. Поэтому до сих пор рентгеновские лазеры работают без зеркал в режиме УСИ (усиленное спонтанное излучение),  [c.434]

В третьей главе после вывода общих соотношений подробно рассматриваются вопросы выбора материалов и толщины слоев зеркал, предназначенных для различных применений управления монохроматическим и широкополосным излучением, использования в качестве монохроматов, фильтров, поляризаторов, устройств для концентрации МР-излучения. Приведены достигнутые к настоящему времени значения коэффициентов отражения многослойных зеркал в диапазоне от 2 нм до 35 нм. Заканчивается глава кратким обзором экспериментальных работ по применению многослойных рентгеновских зеркал.  [c.7]

В первом случае ввиду того, что б 1, получим из формул (1.7), (1.8), что для углов падения, соответствующих os0 п, коэффициенты отражения и Rp практически равны нулю. Если же углы 0 настолько малы, что os 0 > /г, то имеет место так называемое полное внешнее отражение (ПВО) рентгеновских лучей, аналогичное хорошо известному в оптике видимого излучения явлению полного внутреннего отражения, когда R = Rp = 1.  [c.13]

В случае, когда пренебречь поглощением нельзя, что соответ-и ультрамягкого рентгеновского излу-в строгом смысле о критическом угле ПВО. в этом случае имеет смысл говорить об области углов падения, при которых еще происходит отражение. Кривая зависимости коэффициента отражения от угла падения R R (д) уже не будет иметь резкого спада (излома) при угле 0 = а будет плавно спадать с ростом 0. Причем, как нетрудно понять, угловая зависимость будет тем более плавной, чем больше отношение у/б. Для иллюстрации характера угловой зависимости коэффициента отражения рентгеновского излучения воспользуемся удобным для расчетов вариантом формулы Френеля, полученным Комптоном и Алиссоном [24],  [c.14]

Вторая возможность определения б и у по кривым отражения заключается в измерении коэффициента отражения как функции длины волны при, заданном угле скольжения 0 с дальнейшей обработкой результатов с помощью соотношений Кра-мерса—Кронига [35, 58, 59]. Впервые в ультрамягкой рентгеновской области этот метод был использован в работе [19]. Как уже было показано, при малых углах скольжения поляризацией излучения можно пренебречь и описать отражение формулой Френеля  [c.21]

Несмотря на успехи, достигнутые в технологии обработки сверхгладких поверхностей, в настоящее время поверхностные неоднородности остаются одним из основных факторов, ограничивающих разрешение рентгеновских телескопов и микроскопов скользящего падения [20, 30]. Детальное знание зависимости коэффициента зеркального отражения от микрогеометрии отражающей поверхности, а также углового распределения рассеянного излучения (индикатрисы рассеяния) позволяет количественно  [c.47]

Теории отражения электромагнитного излучения от шероховатых поверхностей посвящен ряд обзоров и монографий (см., например, [3, 14, 21]). Однако рентгеновский диапазон длин волн имеет специфические особенности. Прежде всего, здесь имеет смысл рассматривать лишь малые углы скольжения, при которых коэффициент отражения рентгеновского излучения велик. Кроме того, в рентгеновском диапазоне (в отличие от задач радиофизики и акустики), где все вещества обладают малой поляризуемостью, скачок диэлектрической проницаемости на границе раздела крайне мал. В результате оказывается, что при описании взаимодействия рентгеновского излучения с шероховатой поверхностью вводятся два параметра, характерных для этого диапазона длин волн aQyk и а I 1 — е Д (о — радиус корреляции высот шероховатостей 00 и Я — угол скольжения и длина волны падающего излучения е —диэлектрическая проницаемость вещества, на которое падает излучение), от значений и соотношения которых зависят отражающие свойства поверхности [10, 11].  [c.48]


Тем не менее подробные расчеты, проведенные в работах П, 12, 13, 16], показывают, что коэффициенты отражения МР-излучения от многослойных зеркал могут достигать 40—80 %, по для этого необходимо правильно подбирать как вещества, составляющие структуру, так и толятцны пленок. Отметим, что в конечном счете именно поглощение ограничивает все предельные характеристики многослойной рентгеновской оптики.  [c.77]

Как рентгеновские зеркала многослойные структуоы в практическом смысле оказались значительно более гибкими , чем обычные кристаллы. Их параметры легко можно изменять, придавая им нужные свойства. Например, подбирая период структуры в соответствии с условием (3.3), можно настраивать пик отражения на данную длину волны, или на данный угол падения, или на то и другое одновременно. Ширину пика можно варьировать в значительных пределах, подбирая пары веществ — компонентов покрытия, толщины слоев и их число. Наконец, можно так подобрать вещества и толщины слоев, чтобы пиковый коэффициент отражения был максимален. Отметим, что аналогичный резонансный характер с максимумом, положение которого определяется условием (3.3), носит и зависимость коэффициента отражения от длины волны. В связи с этим многослойное зеркало является одновременно и дисперсионным элементом для рентгеновского излучения.  [c.78]


Смотреть страницы где упоминается термин Излучение рентгеновское — Коэффициент : [c.51]    [c.201]    [c.77]    [c.196]    [c.132]    [c.42]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.0 ]



ПОИСК



Излучение рентгеновское

Излучение рентгеновское — Коэффициент поглощения

Излучение рентгеновское — Коэффициент электромагнитное — Виды

Коэффициент излучения



© 2025 Mash-xxl.info Реклама на сайте