Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Масштабный эффект (фактор)—см. Эффект масштабный

Имеются некоторые качественные данные, согласно которым масштабный эффект, связанный с задержкой по времени, меньше влияет на частично и полностью развитую кавитацию по сравнению с ее начальной стадией. Это согласуется с представлением о том, что время начального роста ядра является основным фактором, влияющим на задержку возникновения кавитации, в то время как скорость парообразования, по-видимому, оказывает определяющее влияние на рост пузырей ц установление отдельных фаз присоединенной кавитации. Одним из проявлений слабого влияния этого масштабного эффекта можно считать качественное соответствие между наблюдаемыми длинами неподвижных каверн и протяженностью зоны низкого давления на теле по мере уменьшения К, начиная от условий возникновения кавитации. Рассмотрим не полностью развитую каверну длиной X (безразмерная длина), образовавшуюся на теле с распределением Кт, представленном на фиг. 6.1. Предположим, что течение имеет те же скорости, что и при определении К - Кх — идеальное число кавитации для такой же каверны с такой же относительной длиной на бесконечно длинном теле, а — экспериментально определенное значение числа кавитации. Так как задержка в возникновении кавитации является свойством данного потока жидкости в канале и так как она неизменна, можно предположить, что площадь Ах, соответствующая задержке роста частично развитой каверны, будет равна площади А, соответствующей возникновению кавитации. Если  [c.298]


Однако не следует сводить эффект масштаба только к технологическому фактору. Тщательно поставленные эксперименты показывают, что и при отсутствии технологического фактора размеры образцов оказывают существенное влияние на предел выносливости. Масштабный эффект имеет сложную природу и зависит от многих факторов. Поэтому аналитические зависимости пределов выносливости от размеров гладких образцов, базирующиеся на различных теориях (табл. 2.14) [890], оказываются тем более точными, чем больше определяющих факторов они учитывают.  [c.158]

Уменьшение предела выносливости с ростом абсолютных размеров детали носит название масштабного эффекта. Его влияние на величину предела выносливости оценивают так называемым масштабным фактором (или масштабным коэффициентом), представляющим собой отношение предела выносливости образца, имеющего заданный диаметр, к пределу выносливости геометрически подобного малого (диаметром 7 мм) лабораторного образца  [c.334]

Теперь поставим следующий вопрос. Пусть известно распределение прочности моноволокон, определенное на некоторой длине Lo. Требуется определить прочность пучка волокон длиной L. Если L < Lo (а для композитов, как будет показано ниже, выполняется именно это условие), то в силу вступают два противоположных фактора. G одной стороны, масштабный эффект при большом коэффициенте вариации выражен более сильно, поэтому средняя прочность на длине L растет по сравнению с прочностью, определенной на длине Ьц. С другой стороны, реализация прочности в пучке о оказывается ниже средней прочности и это снижение прочности увеличивается с ростом коэффициента вариации. Поэтому не вполне ясно, какому волокну следует отдать предпочтение, с большим разбросом прочности или с малым разбросом. Во всяком случае, предъявляемые иногда к поставщикам волокна требования ограничить дисперсию прочности некоторым узким пределом не могут считаться оправданными.  [c.695]

Таким образом, разделение факторов носит условный характер. Поэтому естественной является попытка связать масштабный эффект и концентрацию напряжений в единый комплекс не только по форме, но и по существу. А существо состоит в тех представлениях о статистическом характере возникновения и накопления структурных повреждений, о которых говорилось выше. Этот вопрос частично поддается количественной оценке при помощи аппарата теории вероятности, но доведение задачи до числа нуждается, конечно, в принятии некоторых правдоподобных гипотез и систематизации опытных данных. Остановимся на основных предпосылках и рас-  [c.491]


Влияние абсолютных размеров детали (масштабного фактора). Экспериментально установлено, что с увеличением абсолютных размеров деталей их сопротивление усталости снижается. Это объясняется статистической теорией разрушения, согласно которой при увеличении абсолютных размеров возрастает вероятность попадания дефектных зерен в зону концентрации напряжений. Существуют и технологические причины, способствующие проявлению указанной закономерности. Масштабный эффект зависит главным образом от поперечных размеров деталей и оценивается коэффициентом  [c.254]

Внешние факторы температура испытания, скорость деформации, окружающая среда, схема воздействия сил, масштабный эффект.  [c.191]

Стендовые испытания узлов и механизмов машин. При оценке надежности узлов и механизмов машин, теряющих свою работоспособность из-за износа, усталости, коррозии и других причин, не удается, как правило, ограничиться испытанием стойкости материалов, из которых они выполнены. Конструктивные особенности деталей и механизмов, взаимовлияние отдельных элементов, масштабный эффект и другие факторы оказывают существенное влияние на показатели надежности изделия. Поэтому испытание стойкости материалов — это первый этап оценки надежности изделия, это исходные данные для прогнозирования и выбора лучшего варианта. Для подтверждения прогноза и уточнения или определения показателей надежности требуется проведение стендовых испытаний, которые при правильно построенной методике позволяют получить данные, близкие к эксплуатационным, и учесть конструктивные особенности изделия. Однако их трудоемкость значительно выше, чем испытание стойкости материалов на образцах, а результаты могут быть применимы лишь к данной конструкции.  [c.492]

При испытаниях на циклическое кручение, а также изгиб и растяжение-сжатие при получении разрушающего напряжения Ор> 500 МН/м2 (50 кгс/мм ) уже нельзя пользоваться номограммой, представленной на рис. 43. В этом случае ордината горизонтального участка или предел выносливости соответствующих условных кривых усталости б (о ), абсцисса точки перегиба ветвей кривых усталости (Л о) и характеристика наклона левой ветви условной кривой усталости (/Сб) определяются по результатам испытаний аналогичных образцов или деталей машин с учетом влияния на указанные характеристики конструктивных и технологических факторов и масштабного эффекта.  [c.83]

Известно, что прочность деталей машин и аппаратов, изготовленных из одного и того же материала, при соблюдении геометрического подобия, технологии изготовления, условий эксплуатации и других факторов определяется их размерами, т.е. проявляется масштабный эффект или как его еще называют — масштабный фактор.  [c.133]

Методика уточнения остаточного ресурса роторов, основанная на понятии теста на неразрушение. При переносе результатов, полученных при испытании образцов, на систему деталь—условия эксплуатации ряд факторов (различия в условиях нагружения, деформирования и разрушения, наличие масштабного эффекта и т. д.) учитывают введением значительных ( jv= 10, Па коэффициентов запаса.  [c.157]

Масштабный фактор (или иначе называемый масштабный эффект) тесно связан с физической природой прочности и разрушения твердых тел. Механические свойства сплава, особенно при знакопеременных или повторяющихся нагружениях, зависят от абсолютных размеров испытываемых образцов и конструкций даже в случае полного соблюдения подобия их геометрической формы и условий испытания [48, 61, 88, 144]. Предел выносливости гладких образцов понижается с увеличением их размеров, что оценивается коэффициентом влияния абсолютных размеров сечения. Для материалов с неоднородной структурой (литые стали, чугуны) влияние размеров образца на выносливость более резко выражено, чем для металлов с однородной структурой. Наиболее значительно снижается усталостная прочность с ростом размеров образца [48, 88] в случае неоднородного распределения напряжений по сечению образца (при изгибе). Форма поперечного сечения образца, определяющая объем металла, находящегося под действием максимальных напряжений, существенно влияет на выносливость образца. При плоском изгибе влияние на предел выносливости размеров прямоугольных образцов больше, чем цилиндрических. При однородном распределении напряжений по сечению гладких образцов (переменное растяжение — сжатие) масштабный эффект практически не проявляется. Характерно, что при наличии концентраторов напряжения масштабный эффект наблюдается при всех, без исключения, видах напряженного состояния. Чем более прочна сталь, тем сильнее проявляется масштабный эффект.  [c.21]


Использование полученного уравнения кривой усталости дало возможность построить распределение предела усталости на базе 10 циклов для образцов диаметром 10, 20 и 32 мм и при меньшем количестве образцов в серии (рис. 68). Анализ полученных результатов показывает, что для образцов разных диаметров, испытанных как на воздухе, так и в коррозионной среде, пределы усталости, соответствующие малой вероятности разрушения (р = 2%), отличаются не существенно, т. е. нижняя граница рассеивания пределов выносливости сплава практически постоянна. С увеличением вероятности разрушения влияние масштабного фактора на усталостную прочность увеличивается, наблюдается обычный ход масштабных кривых — затухание масштабного эффекта с ростом диаметра образцов (см. рис. 67). В этом можно видеть статистическую природу масштабного эффекта [97]. Характерным для титана является отсутствие инверсии масштабного эффекта в коррозионной среде, что очень важно для возможности прогнозирования масштабного. эффекта не только на воздухе, но и в коррозионной среде по результатам большой выборки испытания малых образцов и определения нижнего предела распределения выносливости. Этот предел и будет устойчивым для данного металла независимо от размера изделия.  [c.141]

Задачами этих этапов исследования работоспособности сварных узлов является оценка совместного влияния на узел различного рода конструктивных и технологических факторов типа соединения, его расположения в узле и технологии изготовления изделия, влияния сложного напряженного состояния, масштабного эффекта, а также ряда других факторов, совместное воспроизведение которых в лабораторных условиях затруднительно. Надежная трактовка полученных результатов испытания на стендах и опыта эксплуатации возможна лишь при наличии данных лабораторных исследований, воспроизводящих раздельное влияние этих факторов.  [c.146]

Отличие данного подхода, кратко записанного выражениями (III.24), (III.25), от упомянутых в том, что конкретно изучены аномальные приповерхностные свойства материала. Это дает возможность вычислить, а не экспериментально определять предел выносливости гладкого образца, учесть влияние на эту величину таких факторов, как концентрация напряжений, масштабный эффект при изгибе, коррозионная среда, остаточные напряжения. Ниже рассмотре-  [c.111]

Основными причинами проявления масштабного эффекта являются металлургический, технологический и статистический факторы.  [c.56]

Влияние второго (технологического) фактора связано с тем, что при механической обработке образцов в их поверхностных слоях создается наклеп и остаточные напряжения, которые по-разному влияют на величину предела выносливости больших и малых образцов. Для исключения влияния этого фактора при исследовании масштабного эффекта пользуются или отжигом в вакууме, снимающим наклеп и остаточные напряжения без окисления поверхности, или применяют много проходов при обточке образцов с постепенным уменьшением глубины резания и подачи для существенного уменьшения наклепа и остаточных напряжений.  [c.57]

Конструктивные факторы масштабный эффект, концентраторы напряжений.  [c.597]

Однако, в действительности существуют расхождения механических свойств конкретных изделий и образца даже при соблюдении подобия геометрических размеров и условий испытания с условиями эксплуатации. Эти явления называют масштабным эффектом или масштабным фактором.  [c.603]

Таким образом, существование масштабного эффекта при механических испытаниях до разрушения, как правило, делает геометрически подобные и аффинные модели непригодными для оценки абсолютных значений прочности и долговечности натурных изделий ( 10.]), Полезной областью геометрически подобного моделирования процессов разрушения остаются всесторонние сравнительные испытания, при которых может быть исключено отрицательное влияние неизвестного масштабного фактора.  [c.250]

Накопление практического опыта испытания материалов показало, что имеется много существенных отклонений от этой концепции. Поскольку эти отклонения означают влияние масштабов или размеров образца или конструкции, все причины, вызывающие отклонения от закона подобия, называют масштабным фактором, а само проявление его — масштабным эффектом.  [c.211]

Влияние радиуса закругления и угла надреза. Масштабный фактор, учитывающий влияние геометрических размеров сечения детали, и связанный с ним масштабный эффект, заключается в том, что по мере увеличения поперечного сечения детали (при достижении им определенной величины) прочность материала  [c.496]

Для того чтобы дать количественную оценку влияния технологического фактора на масштабный эффект, следует, очевидно, установить влияние технологии изготовления на величины Os и Y и затем определить значение по формуле (8.131).  [c.501]

К сожалению, объема выборок при ресурсных испытаниях обычно недостаточно для получения обоснованных статистических выводов. Например, стандартные испытания на усталость (ГОСТ 25.502—79) предусматривают построение кривой усталости по результатам испытаний 10—15 образцов. Для анализа явлений, связанных со статистическим разбросом результатов, масштабным эффектом и другими факторами необходимо испытывать сотни и тысячи образцов, что возможно только при немногих специальных исследованиях. Кроме того, длительность испытаний по ГОСТ 25.502—79 ограничена базой, которую в зависимости от испытуемого материала и целей испытаний принимают равной от 5-10 до 10 циклов. При этом не учитывают повреждения, которые могут возникать при относительно малых напряжениях, если число циклов достаточно велико. В результате выбор функций распределения, характеризующих разброс при базовых ресурсных испытаниях, в значительной степени носит характер принятия статистических гипотез. Это приводит к необходимости использовать дополнительные теоретические соображения, например асимптотические свойства некоторых распределений, а также выводы, вытекающие из соответствующих структурных моделей (см. гл. 4),  [c.94]


Инженерные расчеты на долговечность при циклических нагрузках должны учитывать большое число эксплуатационных, конструктивных и технологических факторов. Среди них — концентрация напряжений, состояние поверхности и масштабный эффект, асимметрия циклов и сложное напряженное состояние, частота нагружения, температура и другие условия окружающей среды. Перечисленные вопросы достаточно широко освещены в литературе применительно как к многоцикловой, так и к малоцикловой усталости [40, 47, 76, 123, 127]. Анализ и сопоставление различных способов редукции (максимумов, пересечений, размахов, полных циклов, падающего дождя ) можно найти в работах [33, 40 J. В настоящее время считают, что два последних способа дают наилучшее соответствие опытных данных и результатов расчета по линейному правилу суммирования. В работах [123, 1271 подробно описаны алгоритмы и программы расчета по этой схеме.  [c.99]

Влияние абсолютных размеров детали. Снижение предела выносливости с ростом абсолютных размеров детали носит название масштабного эффекта. Влияние размеров детали учитывается масштабным фактором (или масштабным коэффициентом) р , представляющим собой отношение предела выносливости, определенного при испытаниях образцов диаметром 7—10 мм, к пределу выносливости, определенному при испытании геометрически подобных образцов (или деталей) больших размеров, т. е.  [c.650]

Величина масштабного фактора зависит от материала детали (более прочные стали чувствительнее к масштабному эффекту), ее размеров, вида деформации (как правило, при одинаковой форме и размерах детали наличия концентраторов на-  [c.650]

Из третьего утверждения не следует делать вывода, что закон моделирования возникновения кавитации заключается только в том, что эксперименты должны проводиться при натурном числе Рейнольдса. Этот вывод не подтверждается, так как нет достаточных оснований считать, что третье утверждение носит общий характер. Соотношение АрА = Сг было только предположением, сделанным для демонстрации связи запаздывания с наблюдаемым масштабным эффектом. Возможно также, что оба параметра, р и 1, влияют нелинейно. Далее, если даже предположение ДрА = Сг, используемое в уравнении (6.1), справедливо, для замены произведения УоЬ числом Рейнольдса нет оснований. Это означало бы, что возникновение кавитации зависит главным образом от плотности жидкости и вязкости, в то время как такие факторы, как скрытая теплота испарения и поверхностное натяжение, могут также играть важную роль.  [c.261]

И разрушении. Масштабный эффект заключается в изменении наблюдаемого физического поведения геометрически подобных моделей и конструкций с изменением абсолютного масштаба (масштабного фактора). При этом геометрическое подобие обоснованно рассматривается как макроскопическое подобие, для которого такие размеры, как диаметр зерна, расстояние между частицами и их размер, и другие микропараметры не учитывают. В этом и заключается сущность масштабного моделирования, так как в противном случае необходимо было бы всегда пользоваться результатами только натурных испытаний. Однако, используя моделирование, следует помнить, что масштабные эффекты при пластическом течении и разрушении проявляются в виде микропроцессов на макроуровне. Например, радиус закругления острой трещины зависит от микрострук-турных факторов. В связи с этим отношения радиуса закругления. трещины к ее длине и длины трещины к размеру образца становятся геометрически неподобными величинами.  [c.434]

Г.В.Карпенко и А.В.Карлашов еще в 50-х годах установили, что увеличение диаметра гладких образцов из нормализованной стали 20Х с 16 до 32 и 40 мм в воздухе уменьшает предел выносливости с 270 до 253 и 245 МПа, а в воде при Л/ = 2 10 цикл соответственно увеличивает условный предел коррозионной выносливости с 125 до 143 и 157 МПа. Испытания проводили при консольном изгибе образцов с частотой 33 Гц. Таким образом в коррозионной среде была установлена инверсия масштабного фактора, т.е. влияние диаметра образца на выносливость в коррозионной среде противоположно влиянию в воздухе. Г.В.Карпенко [25] сделал вывод, что любая причина, способствующая увеличению прочности приповерхностных слоев металла, должна усиливать проявление масштабного эффекта и образцы малого диаметра должны быть прочнее образцов большого диаметра и наоборот, любая причина, уменьшающая прочность приповерхностных слоев металла, должна снижать проявление масштабного фактора.  [c.133]

Имеющиеся в литературе немногочисленные данные дают основание предположить, что описанная выше инверсия масштабного эффекта при коррозионной усталости характерна не для всех металлов и сплавов. Она обнаружена у углеродистых, низколегированных и некоторых высокопрочных нержавеющих сталей, а также алюминиевых сплавов. У стали 12Х18Н9Т увеличение диаметра образца с 10 до 60 мм привело к снижению сопротивления усталости и в воздухе, и в коррозионной среде, т.е. инверсия масштабного фактора не обнаружена [130, с. 16—26]. Причину ее отсутствия авторы видят в склонности стали 12Х18Н9Т к щелевой кор-  [c.135]

Конструктивная прочность сварных узлов стационарных установок типа энергетических может быть наиболее надежно оценена с помощью специальных стендов, в которых изделие доводится до разрушения и которые используются лишь для определения работоспособности какого-либо конкретного узла. К ним могут быть отнесены, например, стенды для оценки работоспособности сварных стыков натурных паропроводов с устройствами для создания дополнительных усилийшзгиба [81], разгонные стенды для оценки прочности композитных дисков [47] и другие, описание которых приведено в п. 16. Однако и при их использовании необходимо учитывать дороговизну проводимых испытаний и невозможность рассмотреть большое число факторов, от которых зависит эксплуатационная надежность того или иного узла. Подобные стендовые испытания должны рассматриваться как заключительный этап лабораторных исследований, которыми установлен механизм разрушения и намечены меры к его устранению. Задачей стендовых испытаний является в этих условиях проверка рекомендаций лабораторных исследований с учетом влияния масштабного эффекта. Объем их ограничивается лишь теми вариантами конструкций материала и технологии изготовления, которые по данным лабораториных исследований обеспечивают максимальную работоспособность изделия.  [c.107]

Относительно причин, обусловливающих масштабный эффект, в настоящее время нет общепринятого мнения. Объяснение природы эффекта только с позиций статистической теории усталостной прочности опытами на осевое растяжение не подтвердилось. Влияние градиента напряжений является, по-видимому, одним из основных факторов, участвующих в проявлении масштабного эффекта. При этом принимается во внимание, что с увеличением градиента напряжений уменьшается объем металла, находящегося под действием разрушающих напряжений. Таким образом, теория градиентности напряжений находится в некоторой связи со статистической теорией. Масштабный эффект можно объяснить также технологическими причинами (металл меньших сечений более качественный), способом обработки поверхности (одни и те же дефекты поверхности проявляются более резко для крупных сечений). Наиболее вероятно полагать, что природа масштабного эффекта определяется сложным комплексом перечисленных факторов, каждый из которых может играть большую или меньшую роль в отдельных конкретных условиях.  [c.21]


Результаты экспериментов показывают, что с увеличением геометрического масштаба безразмерная несущая способность MpliMsMl) различных партий оболочек возрастает. Установленный масштабный эффект связан о влиянием на устойчивость оболочек начальных несовершенств обечайки, искажением формы срединной поверхности в зоне сварных швов, недостаточной точностью обработки торцов. Для оболочек с повышенным качеством изготовления (склейка обечайки вдоль образуюш,ей вместо сварки) влияние масштабного фактора на критические усилия осевого сжатия не наблюдалось 501.  [c.170]

Геометрически подобндле образцы, удовлетворяющие критериям кинетического подобия, позволяют судить по данным испытаний моделей о положении фронта трещины, скоростях процесса разрушения и относительных величинах длительности разрушения натурных деталей [17]. Эти-модели оказываются полезными при сравнительных испытаниях и оценке преимуществ различных вариантов конструкций. Существенным недостатком геометрически подобных моделей является зависимость их механических свойств от абсолютных размеров образцов ( 10.6). Наличие масштабного эффекта делает геометрически подобные модели непригодными для суждения об абсолютных значениях прочности и долговечности натурных изделий. Поэтому оценка масштабного фактора при механических испытаниях совершенно необходима для правильного истолкования результатов экспериментов на моделях [ПО, 281.  [c.218]

С увеличением прочность композита продолжает возрастать однако появляется масштабный эффект и хрзшкость материала. Поэтому при достаточно больших Vf происходит уменьшение прочности композита в целом вследствие уменьшения вязкости разрушения, а также вследствие неизбежных технологических отклонений, приводящих к образованию дефектов структуры. На рис. 34 зависимость от uy изображена схематично в пренебрежении величиной Ощ, так как обычно о . В области проявления масштабного эффекта при l>o < ty < 1, где зависимость vf) нелинейна и где находится максимум среднестатистической прочности (при = Ь ),величина зависит от геометрии микроструктуры и начальных дефектов, т.е. от чисто технологических факторов. Прочность Ofy становится поэтому случайной величиной, а характерная величина откло-  [c.70]

Поскольку очагом зарождения усталостных трещин обычно служат концентраторы напряжений, в том числе микроконцентраторы (микропоры, микровключения, дефект поверхности и т. п.), то результаты испытаний на усталость весьма чувствительны к этим факторам и обнаруживают значительный статистический разброс и масштабный эффект. На рпс. 3.14 приведены полученные Б. Б. Чечулиным (1963 г.) зависимости отношения пределов выносливости образцов из углеродистой стали (светлые кружки) и легированной стали (темные кружки) от диаметра образцов d. При этом do = = 7,5 мм. Разброс значений долговечности намного больше эти значения могут отличаться на порядок.  [c.96]

Вероятность перерезания волокна или прослойки матрицы трещиной, зародившейся внутри них, можно задать некоторой аналитической функцией, зависящей или только от напряжений в компонентах (при активном растяжении), или от числа циклов приложения нагрузки с учетом амплитуды напряжений (при работе материала на усталость), или от времени выдержки под нагрузкой (при испытании материала на длительную прочность) (см. рис. 124). В данном случае имеется в виду квазихрупкое поведение компонентов, так как их разрушение представляется в виде мгно-венньрс актов, имеющих случайный характер и наступающих при выполнении определенных условий или заданных критериев. В силу проявления масштабного эффекта наступление отдельных актов разрушения должно происходить тем позже, чем меньше размеры структурных элементов. Таким образом, в предлагаемом подходе одним из главных факторов,  [c.237]


Смотреть страницы где упоминается термин Масштабный эффект (фактор)—см. Эффект масштабный : [c.327]    [c.146]    [c.29]    [c.22]    [c.141]    [c.56]    [c.66]    [c.138]    [c.351]    [c.127]    [c.258]   
Механические свойства металлов Издание 3 (1974) -- [ c.0 ]



ПОИСК



Масштабный

Фактор масштабный

Эффект масштабный



© 2025 Mash-xxl.info Реклама на сайте