Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал электрохимический коррозии

Подземная электрохимическая коррозия — это разрушение металла вследствие его взаимодействия с коррозионной средой (раствором почвенного электролита), при котором ионизация атомов металла и восстановление окислительной компоненты коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала. Электрохимическая коррозия сопровождается протеканием электрического тока.  [c.197]


Поляризация 19 анодная 21 катодная 20 Потенциал электрохимический коррозии 18, 19  [c.206]

Термодинамическая устойчивость металла приближенно оценивается значением нормального равновесного потенциала. Электрохимическая коррозия может протекать тогда, когда существует начальная разность потенциалов катодного и анодного процессов, т. е. когда анод имеет более отрицательный потенциал по сравнению с катодом. Границы термодинамической вероятности коррозионного процесса для каждого конкретного случая можно определить, рассчитывая начальные потенциалы катода и анода для данных условий. Результаты таких расчетов, представленные графически, получили наименование диаграмм Пурбэ. Наличие начальной разности потенциалов между катодом и анодом указывает на теоретическую возможность протекания коррозионного процесса. Однако реально устанавливающаяся скорость коррозии будет определяться в большей мере скоростями катодного и анодного процессов, чем начальными значениями электродных потенциалов.  [c.39]

Электрохимическая коррозия металлов представляет собой самопроизвольное разрушение металлических материалов вследствие электрохимического взаимодействия их с окружающей электролитически проводящей средой, при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала металла.  [c.148]

Потенциал нулевого заряда металла зависит не только от природы металлов, но и от адсорбции поверхностно активных веществ, которые могут сдвигать потенциал нулевого заряда. Так, адсорбция анионов сдвигает его в сторону более отрицательных значений, а адсорбция катионов — в сторону более положительных значений. С этой точки зрения потенциал нулевого заряда как фактор электрохимической коррозии является переходным между внутренними и внешними факторами.  [c.165]

Принципиальная возможность или невозможность самопроизвольного протекания процесса электрохимической коррозии металла, так же как и химической коррозии, определяется знаком изменения свободной энергии процесса. Возможно самопроизвольное протекание только коррозионных процессов, которое сопровождается убылью изобарно-изотермического потенциала, т. е. AGr < 0. При электрохимической коррозии металлов для расчетов более удобно пользоваться электрохимическими данными — электродными потенциалами. Термодинамически возможен процесс электрохимической коррозии, для которого соблюдается условие  [c.181]


Принципиальная возможность протекания процесса электрохимической коррозии металла определяется, таким образом, соотношением обратимого потенциала металла в данных условиях и обратимого потенциала катодного процесса в данных условиях.  [c.182]

Контролирующий процесс электрохимической коррозии металла можно установить на основании измеренного значения потенциала металла Vx в данных условиях коррозии. Расчеты  [c.274]

Смещение потенциала указывает на то, что при наступлении пассивности затормаживается протекание анодного процесса электрохимической коррозии.  [c.303]

Так как стандартный потенциал меди гораздо положитель-нее стандартного потенциала водородного электрода, коррозия медн с водородной деполяризацией не происходит. В отсутствие окислителей медь обладает хорошей стойкостью в водных растворах II в обычных условиях не вытесняет водород из кислот. Процесс электрохимической коррозии меди протекает в окислительных средах (присутствие в растворе кислорода и других окислителей). Медь обычно корродирует, переходя в раствор в виде двухвалентных ионов Сн +.  [c.247]

Электрохимическая коррозия - это взаимодействие металла с коррозионной средой (раствором электролитов), при котором ионизация атомов металла и восстановление окислительной компоненты коррозионной среды протекает не в одном акте и их скорости зависят от электродного потенциала.  [c.146]

По отношению к большинству металлов алюминий имеет отрицательный электрохимический потенциал и, находясь в контакте с ними, образует гальванические пары, что в присутствии влаги способствует развитию электрохимической коррозии.  [c.121]

Атмосферной коррозии подвержены внешние части машин при действии на них атмосферных осадков и влажного воздуха — кузова и кабины автомашин, обшивка самолетов и т. п. Атмосферная коррозия является по-сущ,еству одним из проявлений электрохимической коррозии, когда влажные газы и жидкие электролиты создают условия для протекания реакций окисления и восстановления (анодные и катодные реакции). Протеканию процессов электрохимической коррозии способствует неоднородность материала, когда отдельные участки поверхности обладают различными значениями электродного потенциала. Так, из-за отдельных включений, наличия пленок, различного напряженного состояния участков поверхности возникает большое число микро гальванических элементов, генерирующих коррозионный ток.  [c.86]

На рис. 2.2 и 2.5 уже пояснялся принцип электрохимического способа защиты. Необходимой предпосылкой для осуществимости такого способа защиты является наличие области потенциалов, в которой коррозионные реакции либо не идут вообще, либо идут с такой скоростью, что в технике ими можно пренебречь. К сожалению, нельзя заранее утверждать, что при любом виде электрохимической коррозии такая область обязательно будет существовать, поскольку области потенциалов для различных видов коррозии накладываются одна на другую и к тому же теоретические области защитного потенциала иногда вообще не могут установиться вследствие протекания побочных мешающих реакций.  [c.62]

При электрохимической защите от коррозии резервуаров, сосудов—ре-акторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2,3.1.2 и рис. 2.12).  [c.378]


Эти выводы согласуются с результатами наблюдений. Интересно отметить, что невозможность измерения истинно равновесного потенциала железа обычно связывали с его структурной неоднородностью, вызывающей электрохимическую коррозию, однако имеется иная возможность протекания процесса  [c.111]

Интересно отметить, что невозможность измерения истинно равновесного потенциала железа обычно связывали с его структурной неоднородностью, вызывающей электрохимическую коррозию, однако имеется иная возможность протекания процесса по изложенному выше механизму. Нормальный равновесный потенциал обратимой реакции (158) близок к нормальному потенциалу ионизации железа Fe Fe + - - 2е (соответственно —0,463 В и —0,440 В по н. в. э. [103]), и поэтому образование промежуточного соединения неизбежно при равновесных условиях ионизации — восстановления железа в водных растворах, а следовательно, неизбежен необратимый процесс по реакции (159) или (161).  [c.112]

Третья и четвертая части справочника содержат материалы для расчета распределения потенциала и тока соответственно при электрохимической коррозии и защите металлов. Помимо этого здесь приведены методики расчета электрических параметров покрытий и узлов, применяемых в целях противокоррозионной защиты.  [c.6]

В силу отмеченных основных особенностей расчет электрохимической коррозии и защиты металлов сводится к расчету распределения коррозионного и защитного потенциала и тока или к определению суммарных токов, приближенно характеризующих суммарные коррозионные потери или эффективность электрохимической защиты.  [c.11]

Основной величиной, непосредственно определяемой при расчетах электрохимической коррозии и защиты металлов, является потенциал в коррозионной среде и). По найденной функции распределения потенциала и определяются следующие величины, характеризующие скорость коррозии и эффективность электрохимической защиты  [c.23]

При расчете электрохимической коррозии и защиты металлов задают граничные условия для потенциала на поверхностях соприкосновения коррозионной среды с металлами и с непроводящими (изоляционными) средами или материалами (например, с воздухом, различными пластическими материалами, резиной и т.п.).  [c.25]

МАТЕРИАЛЫ ДЛЯ РАСЧЕТА РАСПРЕДЕЛЕНИЯ ПОТЕНЦИАЛА И ТОКА ПРИ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ  [c.125]

Настоящий раздел содержит материалы, позволяющие рассчитать распределение скорости коррозии и коррозионного износа при различных наиболее часто встречающихся формах электрохимической коррозии металлов (контактной, язвенной, щелевой и др.). При этом необходимо использовать общие соотношения (1.1) - (1. ), устанавливающие связь скорости коррозии и коррозионного износа с величиной коррозионного потенциала и плотности тока.  [c.125]

Известно [ 71,72,73]/ что в случае электрохимической коррозии растягивающие напряжения, снижая электродный потенциал, ускоряют коррозионные процессы, протекающие на поверхности металлов. По вопросу влияния напряжений на скорость обезуглероживания стали водородом сведений, в литературе не имеется. В связи с этим было проведено исследование влияния напряженного состояния на скорость водородной коррозии стали.  [c.147]

Электрохимическая коррозия металлов возникает на границе раздела фаз металл — электролит. Этот вид коррозии не зависит от типа электролита, будь то сверхчистая вода или расплав соли. Существенного значения не имеет и количество электролита — коррозию может вызвать даже слой влаги, толщиной в несколько десятков миллимикрон. Единственное условие, необходимое для осуществления процесса — это возможность совместного протекания анодной реакции ионизации металлов и катодной реакции восстановления тех или иных ионов и молекул на поверхности металла. Оно реализуется в том случае, когда равновесный анодный потенциал более отрицателен.  [c.15]

Электрохимическая коррозия представляет собой самопроизвольное разрушение металлических материалов вследствие взаимодействия с электролитически проводящей коррозионной средой. При этом ионизация атомов металла (анодный процесс) и восстановление окислителя (катодный процесс) протекают не в одном акте и их скорости зависят от величины электродного потенциала.  [c.15]

Электрохимическая коррозия термодинамически возможна при условии, когда потенциал процесса ионизации металла Ем имеет более отрицательное значение-в сравнении с равновесным потенциалом восстановительного катодного процесса Е, т. е.  [c.82]

Рис. 23. Потенциал--рН-диаграмма водородного и кислородного электродов и области иоз-можных катодных процессов электрохимической коррозии. I — область коррозии при протекании катодного процесса разряда Н-ионов II — область коррозии за счет электрохимического восстановления кислорода 111 — область полной термодинамической стабильности (в отсутствие окислителей с более положительным потенциалом. чем потенциал кислородного электрода). Рис. 23. Потенциал--рН-диаграмма водородного и <a href="/info/6872">кислородного электродов</a> и области иоз-можных <a href="/info/183814">катодных процессов</a> <a href="/info/39838">электрохимической коррозии</a>. I — область коррозии при протекании <a href="/info/183814">катодного процесса</a> разряда Н-ионов II — область коррозии за счет <a href="/info/556460">электрохимического восстановления кислорода</a> 111 — область полной термодинамической стабильности (в отсутствие окислителей с более положительным потенциалом. чем <a href="/info/132210">потенциал кислородного</a> электрода).
Можно выделить электрохимическую коррозию, возникающую при соприкосновении деталей с разными электрическими потенциалами. Наиболее часто она действует в местах уплотнений запорных органов и сальниковых уплотнений. Наличие влаги в набивке, оставшейся после гидравлического испытания арматуры или в результате поглощения набивкой влаги и кислорода воздуха при длительном хранении арматуры, создает условия для электрохимической коррозии шпинделя. Во избежание этого явления потенциал металла должен быть более положительным, чем потенциал набивки. Определить разность электродных потенциалов между набивкой и металлом шпинделя можно при лабораторных испытаниях.  [c.265]


Для прогноза возможности и интенсивности процессов электрохимической коррозии обычно используют значения электродного потенциала Va и Vk обратимых анодных н катодных реакций (приняты также термины обратимый электродный потенциал металла или неметалла, электродный потенциал анодного участка или катодного участка, электродный потенциал анода или катода).  [c.122]

При электрохимической коррозии удаление атомов из кристаллической решетки (коррозионное разрушение) происходит в результате взаимодействия двух процессов перехода сольваритуемых катионов металла анода в раствор и связывание освобождающихся электронов окислителем, присутствующим в растворе электролита. В результате этого на поверхности раздела электрод - электролит образуется двойной электрический слой, что вызывает появление разности потенциалов между электродом и электролитом, т.е. электродного потенциала. Электрохимическая коррозия происходит под действием разности электронных потенциалов катода <р и анода Фд. В замкнутой микрогальванической цепи в соответствии с законом Ома возникает коррозионный ток силой / = (ф - IR = ф/Л, где К -активное электрическое сопротивление системы. Для исследования процессов электрохимической коррозии используют поляризационные диаграммы 1п /-ф. Сила тока коррозии I -= /р, соответствующая равновесию анодной и катодной реакции, определяет скорость корро-  [c.475]

Основное назначение стеклокерампческой пленки на алюмпнид-ной поверхности лопатки компрессора — защитить ее от электрохимической коррозии, которая протекает при пониженных температурах. Электродный потенциал покрытия ДифА-СФ имеет более отрицательное значение по сравнению с потенциалом материала лопатки, поэтому само покрытие будет являться протектором в случае появления забоины на лопатке компрессора. Характер разрушения поверхностных слоев лопаток с покрытием ДифА-СФ при коррозионных испытаниях подтверждает анодный характер покрытия.  [c.167]

Первые сильные явления электрохимической коррозии в районе трамвайных путей обнаружились в 1887 г. в Бруклине на кованых железных трубах и летом 1891 г. в Бостоне на свинцовых оболочках телефонных кабелей [56]. Для исследования этих явлений в США была учреждена первая комиссия по блуждающим токам. Эта комиссия установила, что имелась значительная разность потенциалов между трубами и рельсами электрических железных дорог и что трубы подвергались опасности в тех местах, где их потенциал по отношению к грунту был положительным и ток стекал с них в окружающую среду, что вызывало электролиз . Флемминг экспериментально установил, что железные поверхности, уложенные во влажный песок, при разности потенциалов между железом и песком в 0,5 В и стекающем токе силой 0,04 А уже через несколько дней подвергались заметной коррозии. В 1895 г. Э. Томсон оборудовал первый прямой отвод блуждающего тока к трамвайным рельсам в Бруклине. Выполнением такой связи пытались возвратить блуждающие токи непосредственно к рельсам, предотвращая этим их вредное действие [47]. Однако сила блуждающих токов в некоторых местах при этом настолько возросла, что зачеканенный в муфтах свинец расплавлялся и вытекал.  [c.40]

В технических материалах (стали, сплавы), вследствие явно выраженной электрохимической гетерогенности поверхности, в некоторых случаях возможно местное разделение анодного и катодного процессов, что существенно ускоряет коррозию металлов. Такое ускорение обусловлено тем, что на одних участках энергетически более выгодны процессы окисления металла, на других - процессы восстановления. Однако во всех случаях поверхность металла в электролите эквшотенииальна, так как электропроводность электролита высока и все участки металла заполяризованы практически до одного общего, ,компромиссного потенциала. Электрохимическая гетерогенность поверхности фиксируется только путем микроэлектрохи-  [c.31]

Электрохимическая защита - уменьшение скорости электрохимической коррозии металлических конструкций при их поляризации. Это уменьшение скорости коррозии может быть достигнуто как катодной, так и анодной поляризацией металлической конструкции. При анодной поляризации защищаемый металл или присоединяется к положительному полюсу источника тока (т. е. в качестве анода), или контактируется с металлом, имеющим более положительный потенциал. Уменьшение скорости коррозии при анодной поляризации металла конструкции имеет место только в случае перевода его в пассивное состояние. Поэтому анодная электрохимическая защита может быть эффективна для легко пассивирующихся металлов и сплавов в окислительных средах при отсутствии активных депассивирующих ионов.  [c.9]

Определение электрохимической коррозии металлов также не указывает на отличительные особенности этого процесса. Электрохимическая коррозия металла — это процесс взаимодействия металла с коррозионной средой (раствором электролита), при котором иоинзация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте, а их скорости зависят от электродного потенциала.  [c.11]

Основной причиной электрохимической коррозии является термодинамическая неустойчивость металла в данном электролите, величина которой определяется величиной стандартного электродного потенциала. Как правило, чем более отрицательное значение потенциала, тем менее термодинамически устойчив данный металл. Поскольку экспериментально и теоретически до сих пор не удается установить абсолютные значения потенциалов, то их определяют по отношению к стандартному водородному электроду, потенциал которого условно принимается равным нулю во всех средах и при всех температурах. Электродвижущую силу гальванического элемента, состоящего из стандартного водородного электрода и исследуемого электрода в растворе электролита, называют электродным потенциалом. Помимо водородного электрода, в качестве электродов сравнения могут быть использованы другие электроды, на поверхности которых в растворе протекают обратимые электрохимические реакции с постоянным значением электродного потенциала по отношению к водородному электроду (кислородный, каломельный, хлоросеребряный, медно-сульфатный и др.).  [c.15]

Для электрохимической коррозии металла необходимо присутствие в растворе окислителя (деполяризатора), окислительно-восстановительный потенциал которого иоложительнее обратимого потенциала металла в данных условиях.  [c.16]

В области III потенциал анодного процесса ионизации металла еще более положителен, чем равновесный потенциал восстановления иислорода. В таком случае электрохимическая коррозия будет возможной только в присутствии ОЧбНЬ сильных окислителей — Л 1п04 , Се +, Со +, отличающихся тем, ЧТО их окислительно-восстановительный потенциал обладает высоким -положительным значением.  [c.84]

Электрохимическая коррозия металлов и сплавов имеет место при контакте с влажными газами и жидкими электролитами (водные растворы, расплавы). Для этих процессов характерно пространственное разделение компонентов, участвующих в реакциях окисления (анодные реакции) и реакциях восстановления (катодные реакции). В реальных условиях поверхность технического металла или сплава является обычно электрохимически неоднородной — отдельные участки ее (анодные и катодные) обладают различными значениями электродного потенциала. Причины электрохимической неоднородности весьма многочисленны из-за включений, неоднородных и несплощных пленок из продуктов коррозии, напряжений различного рода и знака, различной концентрации компонентов-окислителей на отдельных участках. Таким образом, на поверхности технического металла или сплава возникают бесчисленные микрогальванические коррозионные элементы (микропары), генерирующие коррозионный ток, суммарная величина которого определяет материальный эффект коррозии. Возможно также возникновение макрогальванических коррозионных элементов (макропар) в тех случаях, когда локализация анодной и катодной реакции происходит на значи-  [c.116]



Смотреть страницы где упоминается термин Потенциал электрохимический коррозии : [c.12]    [c.342]    [c.363]    [c.110]    [c.37]    [c.32]    [c.16]    [c.5]    [c.139]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.18 , c.206 ]



ПОИСК



Материалы для расчета распределения потенциала и тока при электрохимической коррозии металлов

Потенциал коррозии

Потенциал электрохимический

ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ МЕТАЛЛОВ Двойной электрический слой и электродные потенциалы

Электрохимическая коррози

Электрохимическая коррозия

Электрохимические потенциалы и токи коррозии

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте