Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитная анизотропия обменной энергии

Установлено, что намагниченность насыщения и температура Кюри не зависят от структурных несовершенств материала, а характеризуют атомное строение фаз, в связи с чем они могут использованы для определения или идентификации этих фаз. Определение намагниченности насыщения на единицу объема или массы, а также изменение их с температурой используют для изучения диаграмм состояния - термомагнитный анализ. Обменное взаимодействие между электронами соседних атомов является основной составляющей магнитной энергии образца. Однако магнитное обменное взаимодействие не совсем изотропно связано с кристаллографическими направлениями в образце. Установлено, что легкость, с которой достигается намагниченность насыщения, различна при намагничивании вдоль различных направлений в кристалле. Если в решетке имеется одно какое-либо преимущественное направление, например, если она гексагональная или тетрагональная, возникает сильная анизотропия обменной энергии и часто наблюдается отчетливо выраженное преимущественное магнитное направление. Определение магнитной анизотропии является чувствительным показателем структуры кристалла. Энергия намагничивания и энергия анизотропии изменяются с температурой, и в точке Кюри анизотропия, как и намагниченность, исчезает.  [c.34]


Это значение в 2 /я раз меньше, чем проигрыш в энергии при скачкообразном (как на рис. 10.22,а) перевороте спинов. Толщина стенки Блоха увеличивалась бы беспредельно, если бы не магнитная анизотропия, препятствующая этому. Спины в доменной границе ориентированы в подавляющем большинстве не вдоль осей легкого намагничения. Поэтому доля энергии анизотропии, связанная со стенкой Блоха, увеличивается примерно пропорционально ее толщине. Баланс между обменной энергией и энергией анизотропии определяет толщину доменной стенки. В железе эта толщина составляет примерно 300 постоянных решетки,  [c.349]

Кристалл железа имеет 6 направлений [11П легкого намагничивания. При спонтанном намагничивании спиновые магнитные моменты располагаются по одному из этих направлений, вследствие чего энергия магнитной анизотропии оказывается минимальной. В стенках Блоха спиновые магнитные моменты отклоняются от направления легкого намагничивания и энергия магнитной анизотропии увеличивается, причем тем сильнее, чем толще стенки. Поэтому толщина стенок растет до таких размеров, при которых уменьшение обменной энергии, вызванное их появлением, не компенсируется возрастанием энергии магнитной анизотропии. Расчет показывает, что для кристаллов железа стенки Блоха должны иметь толщину порядка 10 м (порядка 400 атомных расстояний) опыт подтверждает это.  [c.297]

Если толщина границы зависит главным образом от соотношения энергий обменной, магнитной анизотропии и магнитоупругой, — то размеры самих доменов связаны не только со значением этих видов энергий, но и с поверхностной энергией, т. е. энергией, зависящей от наличия и распределения в образце неоднородностей неметаллических включений, границ зерен, скоплений дислокаций и т. д. Стремление к уменьшению поверхностной энергии, а, следовательно, к уменьшению потоков рассеяния, приводит к дроблению доменов и образованию замыкающих доменов как на внешних поверхностях кристаллов, так и на внутренних, вокруг пустот, неметаллических включений и т. п. Поэтому практически объем доменов может колебаться даже для одного материала в очень широких пределах (10"1— 10- см ).  [c.11]

Если учитывать только обменное взаимодействие и энергию магнитной анизотропии, то свободная энергия F единицы объёма неоднородно намагниченного ФМ  [c.574]


Особенностью двух классов М. является присущая им очень большая энергия анизотропии, так что у них афф. поле магнитной анизотропии На больше эфф. поля обменного взаимодействия Яе- Фазовая диаграмма для М. 1-го класса на плоскости Я—Т представлена ва рис. 1, а. При низких темп-рах Т при достижении  [c.121]

Наноструктурное состояние влияет на свойства ферромагнетиков. Ферромагнитные материалы имеют доменную структуру, которая возникает в результате минимизации суммарной энергии ферромагнетика в магнитном поле. Согласно [328], она включает энергию обменного взаимодействия, минимальную при параллельном расположении спинов электронов энергию кристаллографической магнитной анизотропии, обусловленную наличием в кристалле осей легкого и трудного намагничивания магнитострикционную, связанную с изменением равновесных расстояний между узлами решетки и длины доменов магнитостатическую, связанную с существованием магнитных полюсов как внутри кристалла, так и на его поверхности. Замыкание магнитных потоков доменов, расположенных вдоль осей легкого намагничивания, снижает магнитостатическую энергию, тогда как любые нарушения однородности ферромагнетика (границы раздела) увеличивают его внутреннюю энергию.  [c.94]

Дальнейшим развитием теории ТМО ферритов являются работы [38, 39], в которых предложена обобщенная модель, объясняющая возникновение наведенной магнитной анизотропии в железоникелевых и железо-никель-кобальтовых ферритах. Согласно этой модели энергия магнитной анизотропии ферритов обусловлена одновременным действием, по крайней мере, двух источников анизотропии обменного взаимодействия и анизотропии электрического кристаллического поля. В соответствии с этим предполагается, что  [c.178]

Анизотропия плазмы при наличии сильного магнитного поля особенно проявляется в разреженной плазме. С увеличением же плотности облегчается обмен энергией между различными степенями свободы и анизотропия температур и давлений несколько сглаживается. Кроме того, анизотропия процессов переноса (электропроводность, диффузия, теплопроводность, вязкость) в плазме не может проявляться в полной мере из-за ряда дополнительных обстоятельств. Так, анизотропия проводимости ослабляется появлением электрического тока в плазме за счет сил инерции, давления и других сил неэлектрического характера, так как под совместным действием этих сил и магнитного поля ионы и электроны в плазме движутся в противоположные стороны, а диффузионные процессы в поперечном направлении осложняются аномальной диффузией, связанной с неустойчивостью плазмы.  [c.443]

У ТИПИЧНЫХ ферромагнитных материалов обменная энергия значительно превосходит энергию магнитной анизотропии и 8 составляет десятки и сотни межатомных расстояний. Поверхностная энергия доменной стенки а также зависит от обменной энергий и энергии анизотропии  [c.286]

Обменная энергия электронов в ферромагнетиках, ответственная за ферромагнитный порядок атомных магнитных моментов в кристалле, имеет электростатич. природу и объясняется законами квантовой механики. Магнитное взаимодействие электронов определяет магнитную анизотропию в ферромагнетиках. Необходимое условие Ф.— наличие постоянных магнитных моментов (спиновых пли орбитальных или обоих вместе) электронных оболочек атомов. Это усло-  [c.362]

Размеры доменов определяются принципом минимума полной энергии. Если не учитывать энергию магнитной анизотропии, а принимать во внимание только конкурирующее взаимодействие обменной энергии и энергии размагничивающего поля, то  [c.104]

Величина, форма доменов и поведение ферромагнетика в магнитном поле будут определяться соотношениями различных видов энергии (обменной, кристаллической анизотропии и т. д.) при данной температуре и данном магнитном поле. На рис. 17.59 (кривая 7) приведена схема кривой намагничивания, на которой можно в общем случае выделить пять областей 7 — область обратимого смещения  [c.311]


Обсудим теперь вопрос почему образуются ферромагнитные домены Ответ на этот вопрос дали Ландау и Лифшиц. Они но казали, чта образование доменной структуры является следствием существование в ферромагнитном образце конкурирующих вкладов в полную энергию тела. Полная энергия Е ферромагнетика складывается из 1) обменной энергии Еовм, 2) энергии кристаллографической магнитной анизотропии Ек- 3) энергии магнитострик-ционной деформации Ех 4) магнитоупругой энергии Ес 5) магнитостатической энергии Ео] 6) магнитной энергии Таким образом,  [c.346]

Полная свободная энергия состоит из следующих основных видов энергий магнитостатической, магнитной анизотропии, магни-тострикции, обменной.  [c.87]

Таким образом, согласно [385] температурные изменения доменной структуры практически не зависят от структурного состояния образца (наноструктурного или крупнокристаллического) и происходят одинаковым образом при тех же температурах. Это говорит о том, что изменения доменной структуры, по-видимому, в основном контролируются такими важными магнитными параметрами, как постоянная магнитокристаллической анизотропии и обменная энергия, а также геометрическими параметрами образца. Микроструктура материала, ее дисперсность, высокая плотность дефектов определяют только локализацию и подвижность стенок доменов.  [c.229]

В ферромагнетиках, в отличие от парамагнитных тел, между неспаренными электронами внутренних недостроенных оболочек имеет место сильное обменное взаимодействие, вызывающее упорядоченное расположение их СПИновых магнитных моментов и спонтанное намагничивание доменов до насыщения Это приводит к существенным особенностям в протекании резонансного поглощения высокочастотной энергии ферромагнетиками, которое называют ферромагнитным резонансом. Физическая суть его состоит е том, что под действием внешнего магнитного поля Нд, намагничивающего ферромагнетик до насыщения, полный магнитный момент образца М начинает прецессировать вокруг этого поля с ларморовой частотой ojl, зависящей от Яо (11.25). Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное Яо, и изменять его частоту ш, то при ю = i. наступает резкое (резонансное) усиление поглощения энергии поля. Резонанс наблюдается на частотах порядка 20-Г-30 ГГц в полях 4- 10 -А/м (л 5000 Э). Поглощение при этом на несколько порядкоз выше, чем при парамагнитном резонансе, так как магнитная восприимчивость ферромагнетиков (а следовательно, и магнитный момент насыщения М) у них много выше, чем у парамагнетиков. Кроме того, так как в формировании эффективного магнитного поля в ферромагнетиках участвуют размагничивающий фактор и поле магнитной анизотропии, то частота ферромагнитного резонанса оказывается зависящей от формы образца.и,направления поля относительно осей легкого намагничивания.  [c.306]

Образование Б. с. влечёт за собой увеличение плотности обменной энергии и энергии анизотропии. Чем уже переходный слой, тем больше обмеЕ1ная энергия и меньше энергия анизотропии на его создание. В результате конкуренции обменного в- аимодействия и магнитной анизотропии устанавливается равновесное распределение вектора М внутри Б. с. (микроструктура Б. с.).  [c.214]

ДОМЕННАЯ СТЕНКА (доменная граница магнитных доменов)— переходный слой от одного домена с однородно намагниченностью Mi к др. домену с однородной намагниченностью (см. Магнитная доменная структура). Толщиеа Д. с. бо определяется конкуренцией неоднородного обменного взаимодействия (стремящегося увеличить и магнитной анизотропии, (уменьшающей 6 ) бд ( 4// ) / , где А п К — константы обменной энергии и энергии анизотропии.  [c.8]

Можно ожидать, что именно благодаря этим своим особенностям аморфные ферромагнетики имеют чрезвычайно высокую магнитную проницаемость. В так называемых нулевых ферромагнетиках, обладающих идеальной магнитной анизотропией, параллельность магнитных моментов поддерживается только за счет энергии обменного взаимодействия, а магнитный лоток замыкается внутри образца вследствие конкуренции с мат-нитостатичеокой энергией. Как видно из схемы, на рис. 5.13, в этом случае направление вращения магнитного момента в некоторых частях образца одинаково, в результате чего может возникнуть так назькваемая круговая доменная структура.  [c.133]

Электронный антиферромагнитный резонанс (ЭАФР) — электронный резонанс в антиферро.магнетиках......явление избирательного резонансного поглощения энергии электромагнитных волн, наблюдаемые при частотах, близких к собственным частотам прецессии магнитных моментов магнитных подрешеток антиферромагнетика [13.21 ]. Особенность ЭАФР является введение понятия магнитная под р е ш е т к а для описания магнитной структуры кристалла, обладающего атомным магнитным порядком. При Яо = О прецессия магнитных моментов двух подрешеток /i, /а происходит во внутренних эффективных полях магнитной анизотропии Яа, направленных вдоль естественной оси антиферромагнетизма (рис. 3.9). Частоты резонанса для подрешеток зависят как от величины эффективного поля обменных сил (молекулярного поля Вейса) Н , так и от // , удерживающего вектора / , /jj вдоль оси г Для обычных в аитиферро-190  [c.190]

Чтобы найти критическую длину 1 однодоменной монокристалли-ческой частицы Fe в форме плоского параллелепипеда, Сато и др. [1021] сравнили между собой энергии нескольких возможных конфигураций доменов. При вычислении энергии доменной стенки учитывались вклады от обменной энергии, а также от энергий анизотропии и полей магнитного рассеяния. Они получили =20 нм при отношении длины к ширине параллелепипеда ге=1 и увеличение I,. с ростом п до значения =60 нм, когда ге = 10.  [c.315]


Для ферритов в соответствии с теорией Танигучи [II] основным источником магнитной кристаллографической анизотропии является анизотропное обменное взаимодействие. Используя теорию кристаллического поля Ван-Флека [12], Танигучи рассчитал энергию магнитной кристаллографической анизотропии ферритов, обусловленную диполь-дипольным взаимодействием катионов, и показал, что эта энергия зависит от величины угла, образованного направлением оси магнитовзаимодействующих атомов и локальной намагниченностью. У материалов с малой величиной этого угла должно происходить направленное упорядочение ионных пар (в кобальтсодержащих ферритах такие пары, по-видимому, Со +—Со +), что и обусловливает возникновение наведенной магнитной анизотропии.  [c.176]

Рпс. 16.34. Асимметрия перекрытия электронных оболочек соседних ионов как одна из причин кристаллографической магнитной анизотропии. Вследствио спин-орбитального взаимодействия распределение электронного заряда — не сферическое. Асимметрия связана с направлением спина, поскольку изменение направления спина по отнопаению к осям кристалла изменяет обменную энергию, а также электростатическую энергию взаимодействия распределений заряда пар атомов. Именно эти эффекты приводят к появлению энергии анизотропии. Энергия системы а иная, чем энергия системы 6.  [c.582]

Происхождение доменов. Ландау и Лифщиц [34] показали, что образование доменной структуры является естественным следствием наличия различных конкурирующих вкладов в полную энергию ферромагнитного тела обменной энергии, энергии анизотропии и магнитной энергии ). Прямым доказательством существования доменной структуры послужили микрофотографии доменных границ, полученные методом порошковых фигур, а также оптические исследования с использованием эффекта Фарадея. Метод порошковых фигур, предложенный Биттером ),  [c.585]

Действительно, если мы рассмотрим взаимодействия магнитных диполей на этом уровне, то увидим, что они складываются из (1) чисто магнитодипольных взаимодействий между магнитными моментами и (2) взаимодействий между магнитными моментами и электрическим полем кристаллической решетки (спин-орбитальные взаимодействия). Эти взаимодействия по сравнению с описанными выше обменными взаимодействиями имеют относительно малую величину порядка 1 (Уе/с)2. По этой причине часто говорят, что они имеют релятивистское происхождение. Однако, несмотря на их относительную малость по сравнению с обменными взаимодействиями, они действительно играют важную роль в ферромагнитных материалах. Причина этого двойная. Во-первых, эти взаимодействия создают в кристалле предпочтительное направление намагничивания, отвечающее минимуму энергии ферромагнетика. Они, таким образом, приводят к появлению упомянутой выше энергии анизотропии, т. е. к зависимости энергии ферромагнетика от направления вектора намагниченности— факт, не учитываемый обменной энергией. Во-вторых, именно через эти взаимодействия устанавливается связь между внешними источниками тепла и спиновой системой ферромагнетика. Если бы этих взаимодействий между спинами и колебаниями решетки не существовало, то невозможно было бы  [c.46]

Наконец, так как m есть не что иное, как образ вектора плотности намагничивания в конфигурации Жа, то локальное магнитное поле В — полевая величина, учитывающая зависимость энергии ферромагнетика от направления намагниченности. В соответствии с обсуждением в 1.6 величину В можно также назвать полем магнитной анизотропии яли магнитокристаллическим магнитным полем. В соответствии с замечанием в 1.6 обменные силы не зависят от направления намагниченности в силу зависимости энергии от переменной М.  [c.354]

Оксидированные порошки, проявляющие обменную анизотропию. Мелкие частицы кобальта, покрытые оболочкой из окиси кобальта, проявляют необычные магнитные свойства. Частицы диаметром 0,02 мкм были получены электроосаждением в ртути, поверхность их была окислена на воздухе, частицы охлаждались до низких температур в сильном магнитном поле. Эти частицы имели однонаправленную анизотропию (рис. 168). Петля гистерезиса смещена вдоль оси поля-, в результате чего коэрцитивная сила равна Яс = 294-10 дж/м (3700 э) в одном направлении и 39 800 а/м (500 э) в другом направлении (см. рис. 166), а максимальная энергия составляет 16 X  [c.236]

Согласно теоретйч. представлениям, обменное взаимодействие выстраивает элементарные магн. моменты ФМ параллельно друг другу. Результирующий магн. момент единицы объема ФМ (намагниченность М) ориентируется в одном из направлений, соответствующих найм, энергии магн. анизотропии,— вдоль одной пз осой лёгкого намагничивания (ОЛН). При этом па поверхностях образца возникают магнитные полюсы (магнитостатич. полюсы, рис. 1, а), ш при по равном нулю результирующем магн. моменте часть энергии образца оказывается  [c.653]

К проявляющимся в этих веществах конкурирующим взаимодействиям, влияющим на установление разл. видов магн. упорядочения, относятся обменное взаимодействие и косвенное обменное взаимодействие ферро-п антиферромагн. характера зависящее от взаимной ориентации магн. моментов диполь-дипольное взаимодействие, осциллирующее РККИ-обменное взаимодействие. В регулярных кристаллич. структурах такие взаимодействия могут приводить к появлению сложной неколлинеарной магнитной атомной структуры (в т. ч. несоизмеримой). В нерегулярных твердотельных системах (аморфных веществах, неупорядоченных двух-или многокомпонентных сплавах и твёрдых растворах) благодаря конкуренции и хаотич. взаимному расположению магн. а примесных ионов (вызывающих иногда случайное изменение локальной оси маги, анизотропии) возникает фрустрация магн. моментов, приводящая к образованию состояния С. с. В этом случае для расчёта наблюдаемых физ, величин кроме обычного термодвнамич. усреднения по ансамблю систем е Гиббса распределением вероятности (обозначаемого <...)) необходимо дополнит, усреднение (обозначаемое чертой сверху) по всем возможным реализациям хаотич. расположения маги, моментов или набора взаимодействий между ними при этом в качестве ф-цНи распределения обычно выбирается комбинация дельтафункций или Гаусса распределение. Полное (но математически сложное) решение задачи усреднения по случайным конфигурациям для свободной энергии С. с, даёт т. н. метод реплик (от франц. replique — копия, образ).  [c.634]

Величина, количество, форма доменов и поведение ферромагнетика в магнитном поле определяются соотношением различных видов энергии (обменной, кристаллической анизотропии и т. д.) при данной температуре и данном магнитном поле. Кривая 1 (рис. 9.53), построенная в координатах — Я, является кривой намагничивания. Кривая 2 построена в координатах магнитная индукция — поле В = ф (Я). Отношение В/Н носит название полной проницаемости [Адолн Угол наклона касатель-  [c.102]

Таким образом, энергия анизотропии представляется в виде степенного ряда, причем берутся только члены разложения с четными степенями, поскольку в большинстве ферромагнетиков энергия одинакова при отклонении намагниченности как в положительном , так и в отрицательном направлении от оси легкого намагничивания. В тех случаях, когда энергия анизотропии зависит от направления вдоль оси легкого намагничивания ( однонаправленная анизотропия, связанная, например с анизотропным обменным взаимодействием в гетерогенных кристаллах), энергия анизотропии представляется в виде ряда как по четным, так и по нечетным степеням направляющих косинусов. Коэффициенты Кп в (1-17) — (1-20) называются константами магнитокристаллической анизотропии и сами по себе не имеют физического смысла, они являются коэффициентами членов ряда, служащего для математической записи энергии анизотропии. При этом соотношения между величинами и знаками двух первых констант магнитокристаллической анизотропии /(] и Л г в (1-20) изменяются при изменении направлений, которым соответствует минимум энергии анизотропии в одноосном ферромагнитном кристалле (т. е. равновесных направлений его намагниченности в отсутствие внешнего магнитного поля) [1-8]. Эти направления могут или совпадать с гексагональной осью кристалла, или лежать в базисной плоскости, перпендикулярной оси кристалла, или образовывать конус направлений легкого намагничивания, осью которого является гексагональная ось кристалла (табл. 1-3).  [c.21]



Смотреть страницы где упоминается термин Магнитная анизотропия обменной энергии : [c.286]    [c.357]    [c.297]    [c.10]    [c.638]    [c.73]    [c.188]    [c.183]    [c.323]    [c.482]    [c.370]    [c.372]    [c.52]    [c.367]    [c.104]    [c.31]    [c.806]    [c.47]   
Физическое металловедение Вып I (1967) -- [ c.286 ]



ПОИСК



Анизотропия

Магнитная анизотропия

Магнитная анизотропия обменная

Магнитная анизотропия энергия

Магнитная энергия

Обмен энергией

Обменная энергия

Энергия анизотропии



© 2025 Mash-xxl.info Реклама на сайте