Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отрыв условия

Таким образом, тип излома определяется, с одной стороны, природой материала, характеризуемой коэффициентом р, а с другой стороны, напряженным состоянием, характеризуемым коэффициентом а. При Р<а имеет место срез при Р> а —отрыв. Условию р = а может соответствовать в одних случаях срез, в других —отрыв, т. е. картина разрушения неустойчивая.  [c.553]

Применение концепции S к анализу критического состояния надрезанных цилиндрических образцов было выполнено Г. В. Ужиком [237, 238], который считал, что хрупкое разрушение может происходить по двум схемам первая — хрупкий отрыв без пластического деформирования происходит при условиях а,-< От и ai=Ra, где Ra, Oi й Oi — соответственно сопротивление отрыву недеформированного металла, интенсивность напряжений и наибольшее главное напряжение вторая — хрупкий отрыв после пластической деформации происходит при условиях Oi>Oy и Oi Ra., где Ra —сопротивление отрыву  [c.58]


Прямая Отр (черт. 86, б), лежащая по условию р плоскости р, пересекается с прямыми Ор и 6р. Фронтальные проекции точек пересечения могли бы определить искомую проекцию т" . Однако точка пере-. сечения прямой отр с линией Ор находится за пределами чертежа, что вынуждает определить вторую точку 2 прямой от с помощью дополнительной прямой линии с (3, 4) плоскости р.  [c.23]

Ф и г. 7.10. Приближение с учетом условий в горле для критического режима течения (отр = 0,3) [366].  [c.317]

При обтекании хорошо обтекаемого крыла, наклоненного под малым углом к направлению потока а на рис. 36, так называемый угол атаки), развивается большая подъемная сила Fy, при этом сопротивление Fx остается малым, и в результате отношение Fy/Fx может достичь больших значений (порядка 10—100). Так продолжается, однако, лишь до тех пор, пока угол атаки не сделается слишком большим (обычно 10°). После этого сопротивление начинает очень- быстро возрастать, а подъемная сила падать. Это явление обусловливается тем, что при больших углах атаки тело перестает удовлетворять условиям хорошей обтекаемости место отрыва сильно смещается по поверх-пости тела по направлению к его переднему краю, в результате чего след делается значительно более широким. Надо иметь в виду, что в предельном случае тела очень малой толщины, т. е. плоской пластинки, хорошее обтекание имеет место только при очень малом угле атаки отрыв происходит на переднем крае пластинки уже при малых углах ее наклона к направлению потока.  [c.259]

Будем теперь рассматривать обработанную таким образом пластинку, направив на нее белый свет под тем же углом, под которым велось освещение. От первой тонкой прослойки серебра отразится небольшое количество света большая же часть его проникнет дальше, отразится частично от второй, третьей и т. д. прослоек. Разность хода между всеми отраженными от разных прослоек пучками будет равна двойному расстоянию между прослойками она равна для той области, где прослойки разделены расстояниями т. е. где при обработке действовал свет длины волны Интерферируя между собой, пучки, отраженные от этой области, дадут максимум для света с длиной волны Наоборот, для всякой другой длины волны (X) найдется такое число слоев т, которое даст разность хода, равную нечетному кратному полуволны /аХ. Соответствующее т определится из условия тХ = (2р -р + 1) /а)и. Таким образом, луч с длиной волны X, отрал<енный от первого слоя, будет ослаблен лучом, отраженным от (т + 1)-го слоя луч, отраженный от второго слоя, нейтрализуется лучом, отраженным от (т + 2)-го слоя, и т. д.  [c.119]


Следует отметить, что деление материалов на хрупкие и пластичные носит условный характер. Такое деление имеет смысл по отношению к стандартным методам испытаний. При простом сжатии цилиндрических образцов мрамора деформация разрушения в среднем около 0,3%, но когда испытание проводится при одновременном действии бокового давления порядка 160 МПа, то деформация в момент разрушения достигает 9%. Если бы удалось осуществить всестороннее равномерное растяжение, то мы получили бы отрыв в чистом виде. Трехосное напряженное состояние, близкое к состоянию всестороннего растяжения, приводит к хрупкому разрыву даже в том случае, когда материал является пластичным в обычных условиях испытаний.  [c.65]

ОТ условий входа идр.) НО основным фактором, определяющим отрыв потока, является градиент давления. Наблюдаемые в опытах разнообразные структуры потока в диффузорах обусловлены различными законами изменения градиента давления по длине диффузора и соответствующим положением точек отрыва.  [c.352]

Опыты показывают, что безотрывные течения в плоских диффузорах ограниченной длины возможны при углах раскрытия, не превышающих 8—10°. Появление отрыва зависит не только от угла раскрытия, но и от ряда других параметров (например, от формы поперечного сечения диффузора, от условий входа и др.) но основным фактором, определяющим отрыв потока, является градиент давления. Наблюдаемые в опытах разнообразные структуры потока в диффузорах обусловлены различными законами изменения градиента давления по длине диффузора и соответствующим положением точек отрыва.  [c.386]

Вместе с тем отрыв потока может оказаться полезным при использовании некоторых видов летательных аппаратов или их элементов. Например, тонкий профиль, пригодный для полета с большой скоростью, можно приспособить для малых скоростей, вызвав искусственным путем отрыв потока в каком-либо месте на верхней стороне и обеспечив затем его присоединение к стенке на некотором удалении от задней кромки. В результате достигается эффект утолщенного профиля, который более пригоден для полета с малой скоростью. Благодаря отрыву могут быть улучшены различные аэродинамические характеристики аппаратов. Отдельные части аппаратов могут работать в условиях высоких температур. Используя отрыв, можно в отдельных случаях добиться их снижения, обеспечив допустимый режим теплопередачи.  [c.97]

Необходимым условием отрыва является положительный градиент давления. Следовательно, в общем случае отрыв потока происходит под воздействием такого градиента, а также ламинарных или турбулентных процессов. Если оба эти фактора отсутствуют, то отрыва не происходит. Например, поток не отрывается от плоской пластинки, для которой характерными являются постоянство давления во всех сечениях пограничного слоя и, следовательно, равенство нулю продольного градиента давления = 0).  [c.97]

Исследования показали, что срыв можно предотвратить, если осуществить отсос пограничного слоя и тем самым исключить воздействие на поток такого фактора, как вязкость, являющуюся одним из определяющих условий отрыва. С другой стороны, можно создать искусственно условия, при которых проявляется действие сил вязкости, и тем самым вызвать отрыв  [c.99]

Носовой щиток (рис. 1.12.9). В отличие от закрылка носовой щиток помещается на передней кромке крыла. Поворот такого щитка в сторону, обратную отклонению крыла на большие углы атаки, позволяет в условиях полета с дозвуковыми скоростями предотвратить отрыв потока с  [c.108]

При дальнейшем выдвижении иглы (рис. 6.1.1, б) угол р 1, под которым происходит отрыв потока, постепенно уменьшается, скачок уплотнения становится коническим и давление за ним снижается. При этих условиях продольный градиент давления в пограничном слое на поверхности иглы  [c.384]

При высоких давлениях, когда скорость изменения пузырька ничтожна (Ja < 1), определяющую роль в распределении давлений в окружающей пузырек жидкости играют массовые силы. Здесь естественно обратиться к рассмотренным в гл. 2 задачам гидростатики газожидкостных систем, в которых анализируется возникновение неустойчивости осесимметричных равновесных поверхностей раздела при достижении определенного (критического) объема парового пузырька. При Ja 1 распределение давления в окрестности растущего пузырька обусловлено не только гидростатикой, но и движением расталкиваемой пузырьком жидкости. В этих условиях модель, позволяющая рассчитывать размер пузырька в момент отрыва, должна объяснять, почему, начиная с некоторого этапа эволюции пузырька, уравнение (6.45) продолжает выполняться лишь при условии отделения парового объема от стенки. Таким образом, естественно в первую очередь рассмотреть указанные два предельных случая отрыв пузырьков при Ja < 1 (гидростатическое приближение) и Ja 1 ( инерционная схема отрыва ),  [c.274]


Последнее условие соответствует Q (/) = 0. Из рис. XII.7 видно, что (/) равно нулю прй значении формпараметра = = —0,0681. Знак минус свидетельствует о том, что отрыв происходит в области диффузора.  [c.315]

При невыполнении этого условия жидкость начинает кипеть и внутри насоса, в зоне минимального давления, образуются полости, заполненные парами > идкости, а также выделяющимся из нее воздухом. При этом наблюдается отрыв потока жидкости от ограничивающих его твердых поверхностей — лопаток (в центробежных насосах) и поршня (в поршневых насосах). Если при дальнейшем движении потока давление в нем повышается, происходит конденсация паров и указанные полости смыкаются. Подобное явление называется кавитацией  [c.98]

На рис. 27.7 [81] представлены кривые изменения локального числа Нуссельта при поперечном обтекании цилиндра в зависимости от угла ф для различных чисел Рейнольдса в условиях постоянного теплового потока по поверхности. Из рисунка видно, что число Нуссельта уменьшается, начиная от передней критической точки, достигает минимума при некотором угле ф и далее вниз по потоку резко возрастает. В передней критической точке толщина ламинарного пограничного слоя мала и поэтому локальные коэффициенты теплоотдачи и числа Нуссельта велики. По мере удаления от критической точки вниз по потоку растет толщина пограничного слоя, вместе с ней растет его тепловое сопротивление и коэффициент теплоотдачи уменьшается. В зоне отрыва пограничного слоя коэффициент теплоотдачи вновь резко возрастает. В этой области происходят весьма сложные и еще до конца не ясные явления. Здесь, видимо, происходит периодический процесс — утолщение пограничного слоя, его отрыв и унос оторвавшейся массы жидкости вниз по потоку. Этот периодический процесс непрерывно повторяется. Можно ожидать, что чем больше таких процессов происходит в единицу времени, тем интенсивнее теплоотдача, так как в момент отрыва слоя тепловое сопротивление в этой зоне значительно уменьшается. Очевидно, что применить гидродинамическую теорию теплообмена (см. гл. 24) в этой области невозможно. На интенсивность теплоотдачи в зоне отрыва влияют число Рейнольдса, форма и качество поверхности (шероховатость) обтекаемого тела, физические константы жидкости.  [c.321]

Взаимодействие осесимметричной сверхзвуковой струи воздуха по нормали с пластиной. Теплообмен при взаимодействии сверхзвуковой струи с преградой, как и дозвуковой, осложнен совместным действием высокой интенсивности турбулентности, отрицательного градиента давления и дополнительно волновой структурой (может порождать турбулентность, обусловливать отрыв потока от стенки и пр.) [69]. Механизм переноса теплоты в указанных условиях до конца не ясен, поэтому теплоотдачу изучают экспериментально.  [c.399]

При других условиях можно наблюдать полный отрыв струи от внутренних стенок насадка (рис. 153), и насадок превращается — в гидравлическом смысле — в отверстие с острыми краями.  [c.267]

В рассматриваемых условиях еще более, чем при стесненном продольном обтекании, гипотеза стержнеподоб-ности ( 10-5) неверна (рис. 10-17). Теплоотдача на экваторе трубки, как правило, превышает теплообмен на фронтальной и в кормовой ее части, где соответственно образуется неподвижная призма частиц и отрыв слоя ( воздушный мешок ). При уменьшении размера частиц (с 0,93 мм до 0,15 мм) оптимум теплоотдачи смещается от 8G к 120°.  [c.349]

Следует указать, что общая структура потока, полученная на модели электрофильтра при рассматриваемом варианте подвода, подтвердилась в промышленных условиях работы аппарата. При обследовании решеток такого электрофильтра на одной из ТЭЦ были обнаружены слс.ты эр,дни в ви. Ш деф ф.мчции отверстий, принявших овальную форму (рис. 9.6, о) вследствие разрушения их краев. Направление разрушения краев очень близко совпало с направлением линий тока, наблюдавшихся на мг шли. по шелковинкам (рис. 9.6, г). Нижняя часть решеток электрофильтра была настолько сильно. разрушена, что местами группы отдельных отверстий обтшдииялись в большие сплошные отверстия. Более сильная эрозия в. нижней. части решетки закономерна, так как в этом месте газ, идущий из подводящего диффузора с наибольшими скоростями (отрыв потока происходит от верхней стенки), испытывает при растекании по решетке резкое искривление с поворотом вверх. Искривление потока приводит к появлению центробежных сил, отбрасывающих наиболее тяже.лые частицы, взвешенные в потоке, в сторону от центра кривизны, т. е. как раз в сторону нижней части решетки. Набегая со сравнительно большой скоростью и скользя по решетке в указанном месте, твердые частицы постепенно ее разрушают.  [c.232]

Соединения склеиванием не лишены и недостатков низкая прочность на односторонний отрыв или отдир (сТд 9-7-65 даН/см ) относительно невысокая долговечность необходимость нагрева, прижатия и выдержки (до 24 ч и более) деталей при склеивании зависимость прочности от сочетания склеиваемых материалов, температуры склеивания и условий эксплуатации соединений необходимость соблюдения специальных мер по технике безопасности некоторая неравномерность распределения напряжений, так как наибольшие напряжения сдвига возникают в углах и по краям поверхностей склейки, где в первую очередь и появляются трещины.  [c.398]

Для системы, образованной пузырьками воздуха в воде при температуре 20° С, эмпирически получены следующие значения R — 9,05 а и Vpl2R = 0,231. Предполагается, что отрыв пузырька происходит под действием выталкивающей силы и что поверхностное натяжение соответствует статическому, отвечающему равновесным условиям. Показано, что при малых скоростях газа радиус газового пузырька не зависит от расхода газа и возрастает пропорционально кубическому корню из диаметра отверстия.  [c.119]


При наличии трещины поля напряжений у ее края очень сильно локализованы и быстро затухают, так что если зона пластической деформации у края треищны по сравнению с ее длиной и размером образца мала, то при математический трактовке процесса размером этой зоны можно пренебречь и рассматривать поведение тела, как в упругой задаче. Это позволило моделировать различные виды разрушения материала путем растяжения специального образца с предварительно созданной трещиной в условиях, обеспечивающих автомодельность напряженно-деформированного состояния локальных объемов трещины, т.е. когда напряженно-деформированное состояние у края трещины определяется ИЛИ коэффициентом интенсивности нанряжений К, (нормальный отрыв), или Кц (поперечный сдвиг), или К,ц (антиплоская деформация). Когда напряжения и деформации на фронте трещины достигают критической величины, возникает нестабильность разрушения. Это критическое состояние по  [c.290]

Это условие заключается в требовании, чтобы скорость жидкости не обращалась в бесконечность на острой задней кромке крыла напомним в этой связи, что при огибании угла идеальной жидкостью скорость в вершине угла обращается, вообдце говоря, в бесконечность по степенному закону (задача 6 10). Можно сказать, что поставленное условие означает, что струи, стекающие с обеих сторон крыла, должны плавно смыкаться без того, чтобы поворачивать вокруг острого угла. Естественно, что при выполнении этого условия решение задачи о потенциальном обтекании приведет к картине, наиболее близкой к истинной, при которой скорость везде конечна, а отрыв происходит лишь у самой задней кромки. Решение становится г[осле этого вполне однозначным и, в частности, определяется и нужная для вычисления подъемной силы циркуляция Г.  [c.261]

Решение. В граничном условии р = О на открытом конце трубки можно приближенно пренебречь излучаемой волной (мы увид 1м, что интенсивность излучения из г.онца трубки мала). Тогда имеем условие р, = — где р, и р — давления в падающей волне и в волне, отрал енной обратно в трубку для скоростей будем соответственно иметь v =v , так что сум-марная скорость на выходе из трубки ес ац = у,-Ь = 2 1. Поток энергии в падающей волне равен Spai= A SpiiQ. С помощью (77,5) получаем для отношения излучаемой знергии к потоку в падающей волне  [c.416]

Наличие даже слабого скачка уплотнения приводит к резкому увеличению давления во внешнем потоке. Рост давления передается навстречу потоку по дозвуковой части пограничного слоя. Линии тока отклоняются от стенки, порождая в сверхзвуковой частя пограничного слоя семейство волн сжатия, которые распространяются во внешний поток и оказывают влияние на форму и интенсишность скачка уплотнения вблизи области взаимодействия. Продольный градиент давления в пограничном слое оказывается значительно меньше, чем во внешнем потоке. Если скачок слабый, то движение в пограничном слое происходит под воздействием небольшого положительного градиента давления и отрыв потока не происходит. С увеличением интенсивности скачка уплотнения во внешнем потоке возрастает градиент давления вблизи стенки и возникает отрыв пограничного слоя. При этом увеличивается отклонение линий тока в сверхзвуковой части течения, благодаря чему поддерживается необходимое распределение давления, соответствующее данной интенсивности скачка уплотнения. В зависимости от условий во внешнем потоке (интенсивности скачка уплотнения, местного числа М, ускоренного или замедленного характера течения) и формы обтекаемого тела возможны два случая. В первом случае поток после отрыва присоединяется снова к стенке. Сразу за скачком уплотнения возникают волны разрежения, как при обтекании внешнего тупого угла. В месте присоединения поток направлен под некоторым углом к стенке, поэтому здесь возникает новый скачок уплотнения, который может вызвать иногда новый отрыв пограничного слоя. Таким образом, могут появиться несколько 22  [c.339]

Рассмотрим также теплообмен на профиле турбинной лопатки при наличии зон ламинарного, переходного и турбулентного течения. Расчет выполняется при использовании уравнений (1.127) с дополнительными условиями по переходу (1.128). Расчетные и опытные значения числа Нуссельта на турбинном профиле показаны на рис. 7.16 для двух чисел Рейнольдса (Rej = рыас/м., 2 — скорость на выходе из решетки с — хорда лопатки). Результаты приведены для выпуклой стороны профиля. При меньшем числе Re (Rea = 1,84.10 ) пограничный слой остается ламинарным вплоть до точки отрыва (при х1с = 0,86), расчетное местоположение которой согласуется с опытным (в точке отрыва пограничного слоя трение на стенке становится равным нулю). При большем числе Re (Re = 6,75.10 ) отрыв  [c.265]

Диаграмма механических состояний указывает также, каким образом следует определять в опыте характеристики материгсла <Тр,,р и Трр(,з. Так как отрыв невозможен при отсутствии растягивающих главных напряжений, т. е. при 1 < О, то именно в этих условиях сдедует находить т р . Опыты, следовательно, надлежит проводить в условиях трехосного сжатия с неравными главными напряжениями. Однако высокопластичные материалы в подобных условиях не удается перевести в состояние разрушения. Поэтому для приближенной оценки Тррез проводят опыт на перерезывание цилиндрического стержня, вставленного плотно, без зазоров в специальное точно изготовленное приспособление, которое конструируется симметричным, чтобы имел место так называемый двухплоскостной срез (рис. 6.7). При этом касательные напряжения по плоскостям среза можно оценить с помощью формулы  [c.145]

По ГОСТ 8509 — 72 подбираем номер уголка, сравнивая площадь F , соответствующую этому номеру, с Гпотр В качестве рабочей (безопасной) выбирается наименее отличающаяся от Г отр большая площадь или меньшая при условии, что относительное отклонение  [c.59]

Чтобы объяснить это явление, обратимся к эпюрам ос-редненных скоростей по сечению (на рис. 105 такие эпюры показаны для двух сечений). Нетрудно заметить, что условия движения для струек в основной толще потока и вблизи стенки неодинаковы. В основной толще потока струйки обладают значительной кинетической энергией, за счет которой и происходит указанный переход части кинетической энергии в потенциальную. Струйки же вблизи стенки вследствие малой скорости имеют весьма малую кинетическую энергию , поэтому движение частиц здесь вообще затруднено в направлении положительного градиента давления, т. е. в сторону от меньших давлений к большим. Может наступить момент, когда частицы в этих струйках остановятся и начнут двигаться в обратном направлении, несмотря на то что в основном потоке частицы продолжают двигаться вперед. Количество заторможенной жидкости между стенкой и основным потоком быстро увеличивается и область возвратного течения все больше расширяется, пока совсем не вытесняет транзитный поток от стенки. Так возникает указанный выше отрыв потока от стенки.  [c.183]

Отрыв пограничного слоя от плавной поверхности требует более детального рассмотрения. Обращаясь к схеме рис. 158, б, необходимо подчеркнуть, что необходимым условием образования точки отрыва С является положительный градиент давления, т. е. движение в сторону увеличивающегося давления Apldx > 0). С подобным явлением мы уже сталкивались при изучении движения в диффузоре в условиях внутренней задачи ( 42). В данном случае положительный градиент давления создается потоком вне пограничного слоя, который считается потенциальным. Для частиц среды, находящихся во внешнем потоке, полная энергия вдоль течения не изменяется, происходит только преобразование кинетической энергии в потенциальную. Иначе ведут себя частицы, движущиеся вблизи стенки, т. е. в пределах пограничного слоя. Вследствие  [c.303]



Смотреть страницы где упоминается термин Отрыв условия : [c.114]    [c.327]    [c.136]    [c.340]    [c.136]    [c.351]    [c.386]    [c.387]    [c.99]    [c.65]    [c.104]    [c.318]    [c.255]    [c.140]    [c.43]   
Адгезия пыли и порошков 1976 (1976) -- [ c.217 ]



ПОИСК



Влияние условий отрыва на адгезионную прочность пленок

ДРУГИЕ ТИПЫ ТЕЧЕНИЙ, ОПИСЫВАЕМЫЕ ТЕОРИЕЙ СВОБОДНОГО ВЗАИМОДЕЙСТВИЯ Отрыв ламинарного пограничного слоя в сверхзвуковом потоке в условиях малого поверхностного трения

Напряжения в окрестности вершины трещины нормального отрыва в условиях плоского деформированного состояния в идеально пластическом теле

Напряжения в окрестности вершины трещины нормального отрыва в условиях плоского напряженного состояния в идеально пластическом теле

Особенности и условия технической эксплуатации автомобилей, работающих в отрыве от постоянных баз

Отрыв

Отрыв в пограничном слое (см. Пограничный слой, отрыв) условие сопряжения

Отрыв условие Бриллюэна — Вилла

Управление отрывом потока, охлаждение стенки Условие смыкания» линий тока

Условие отрыва струй

Условие отсутствия отрыва

Условие сопряжения (см. Отрыв жидкости с образованием суперкаверны)

Условие сопряжения (см. Отрыв жидкости с образованием суперкаверны) предметный указател

Условия отрыва паровых пузырьков от твердой поверхности при кипении

Условия отрыва пограничного



© 2025 Mash-xxl.info Реклама на сайте