Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимическая защита катодная и анодная

Электрохимическая защита. Этот метод основан на снижении скорости коррозии металлов путем смещения их электродных потенциалов до значений, соответствующих крайне низким скоростям коррозии. Это достигается путем поляризации металла конструкции от источника постоянного тока или при контакте с добавочным электродом ( жертвенным металлом), являющимся анодом по отношению к защищаемой конструкции. Существуют две принципиальные схемы такой защиты катодная и анодная.  [c.72]


Электрохимическая защита — катодная и применение протекторов анодная электрохимическая защита и защита от блуждающих токов применением электродренажа.  [c.5]

В настоящее время катодная защита от коррозии находит достаточно широкое применение только в области природных вод и грунтов. Б будущем однако можно предвидеть возможности ее применения для промышленных установок и резервуаров. Поэтому в справочник включена глава по анодной защите, которая применяется как самостоятельный способ лишь в последнее десятилетие. Катодная и анодная защита в принципе очень похожи, чем и оправдывается применение термина электрохимическая защита в подзаголовке книги.  [c.17]

Наличие зависимости скорости электрохимической реакции от потенциала электрода представляет принципиальную возможность уменьшения скорости анодного растворения металла Ме->-Ме+ +пе за счет внешней поляризации. Смещение потенциалов в отрицательную сторону за счет внешнего источника тока приводит к тому, что на поверхности металла равенство скоростей катодной и анодной реакции ik = ia смещается в сторону увеличения скорости катодной реакции с соответствующим уменьшением скорости анодного растворения металла. Происходит так называемая катодная защита металла (рис. 24,/). Катодная защита может быть электрохимической (от внешнего источника тока) или протекторной (при контакте с более отрицательным металлом),  [c.141]

Теоретически полная защита металла от коррозии при катодной поляризации возможна тогда, когда металлу будет сообщен потенциал более отрицательный, чем термодинамический потенциал металла. Величина защитного эффекта при некотором смещении потенциала Дф определяется катодной и анодной поляризуемостью Дф/Дг системы. Катодная защита эффективна тогда, когда металл обладает большой катодной поляризуемостью и малой анодной, т. е. для смещения потенциала системы до потенциала защиты фз нужны относительно небольшие токи. Во всех случаях электрохимическая защита эффективна в средах с достаточно высокой электропроводностью. Как правило, ее широко применяют для защиты от коррозии в морской воде, в почвах, в грунтовых водах и т. п.  [c.141]

Срок службы деталей при химическом изнашивании можно увеличить, используя легированные коррозионно-стойкие стали, применяя коррозионно-стойкие металлические и неметаллические защитные покрытия, в тйм числе пассивируя поверхности деталей, применяя электрохимическую защиту (катодную—минус на детали) или создавая пассивную анодную пленку (анодная защита—плюс на детали).  [c.265]


К электрохимическим методам борьбы с коррозией относятся такие, в основе которых лежит принцип непосредственного воздействия на скорость протекания сопряженных анодных и катодных реакций. Прежде всего это выражается в изменении потенциала защищаемого металла. Различают катодную и анодную электрохимическую защиту.  [c.260]

На рис. 10.1 приведена схема, поясняющая снижение скорости растворения металла при различных способах его электрохимической защиты. В зависимости от направления смещения потенциала металла электрохимическая защита подразделяется на катодную и анодную.  [c.288]

Внешняя поляризация влияет на КР титановых сплавов, что указывает на электрохимическую природу процессов, лежащих в основе этого явления (рис. 4.14). При потенциалах отрицательнее —0,8 и положительнее +0,3 в водных растворах галогенидов существуют области соответственно катодной и анодной защиты. Сплавы титана, чувствительные к КР, обладают минимальной коррозионно-механической прочностью при потенциалах (—0,2 -  [c.196]

Многочисленные известные, а также все вновь появляющиеся методы защиты металлов от коррозии могут быть рассмотрены на основе характера оказываемого ими торможения на ту или иную стадию электрохимической коррозии или изменения ими степени термодинамической нестабильности системы. В этом случае в соответствии с основным выражением электрохимической коррозии (1) методы защиты металлов можно классифицировать следующим образом (см. табл. 2). В качестве способов защиты находят практическое применение как методы, базирующиеся на уменьшении степени термодинамической нестабильности, так и методы, основанные на торможении кинетики катодных и анодных процессов, и в несколько меньшей степени — методы, действие которых обусловлено увеличением общего омического сопротивления коррозионной системы.  [c.10]

К настоящему времени доказано [4—6], что растворение металлов (электрохимический процесс) — результат протекания сопряженных и независимых катодной и анодной реакций, скорость которых, согласно законам электрохимической кинетики, определяется общим значением потенциала на границе металл — раствор, составом раствора и условиями диффузии компонентов или продуктов реакции в растворе. Скорость окислительной и восстановительной реакций выражается через плотность анодного и катодного токов. Электрохимические принципы защиты металлов от коррозии [7, 8] вытекают из анализа коррозионных диаграмм (рис. 1), на которых представлены в зависимости от потенциала истинные скорости возможных в системе металл — раствор анодных и катодных реакций. Защита металла от коррозии достигается либо электрохимической защитой — искусственным поддержанием потенциала вблизи равновесного потенциала анодной реакции ф  [c.9]

Электрохимическая защита состоит в катодной или анодной поляризации защищаемой конструкции. Она осуществляется присоединением к конструкции извне источника постоянного тока или постороннего электрода — протектора. Электрохимическую защиту подразделяют на катодную и анодную.  [c.97]

Различают следующие два вида электрохимической защиты металлов от коррозии с помощью постоянного электрического тока от внешнего источника катодную и анодную защиту.  [c.241]

Скорость электрохимической коррозии можно значительно уменьшить, если металлическую конструкцию подвергнуть поляризации. Этот метод получил название электрохимической защиты. В зависимости от вида поляризации различают катодную и анодную защиту.  [c.186]

Применение методов торможения коррозии обработка коррозионной среды — удаление стимуляторов и введение замедлителей (ингибиторов) коррозии Электрохимическая защита с подачей внешнего тока (катодная и анодная), применение протекторов  [c.138]

К ингибиторам, предназначенным для использования в ХИТ,, помимо общих требований, предъявляется ряд специальных. В химических источниках тока защита от коррозии обеспечивается преимущественным торможением частной катодной реакции. Анодная реакция в присутствии ингибитора не должна или почти не должна замедляться. Эффективность работы другого электрода ХИТ (катода) не зависит от присутствия ингибитора, т. е. электрические, характеристики не ухудшаются при введении ингибитора и не являются функцией его концентрации. Ингибитор не восстанавливается и не окисляется даже при наиболее отрицательных и наиболее-положительных потенциалах рабочих электродов ХИТ, т. е. не подвергается электрохимическим превращениям с потерей ингибирующей способности.  [c.83]


Такие диаграммы pH—имеются для всех металлов [7]. Они дают представление о возможном характере коррозии и о возможности электрохимической защиты путем изменения потенциала посредством наложения постоянного тока. При уменьшении потенциала в направлении области III необходимо накладывать катодный ток, а при повышении потенциала в направлении области I или к заштрихованному участку анодный защитный ток. Все это является основой как для катодной, так и для анодной защиты. Для первой оценки практических возможностей защиты нужно рассматривать и область устойчивости Н2О между прямыми а и б. За пределами этой области возможности изменения потенциала ограничиваются вследствие электролитического разложения воды. Поэтому уже на основании рис. 2,2 можно заключить, что в кислых растворах при низких значениях pH катодная защита практически невозможна и может быть обеспечена только анодная защита.  [c.52]

В случаях I и П защита обеспечивается катодной поляризацией, а в случаях HI и IV—анодной. При этом защитный ток в случаях I и III может подводиться без регулирования, тогда как в случаях II и IV должно осуществляться регулирование потенциала. Разработка надежных в эксплуатации и достаточно мощных автоматических защитных преобразователей с регулированием потенциала создала предпосылки для применения электрохимической защиты во многих областях (см. раздел 20).  [c.62]

Как и при коррозионном растрескивании под напряжением, развитие трещин зависит от потенциала. Однако для электрохимической защиты этот эффект гораздо менее полезен. Путем анодной защиты или пассивированием можно только несколько увеличить срок службы, но полной защиты при этом не достигается [71]. Катодная защита возможна только при существенно сниженном защитном потенциале и оказывается неэффективной уже в слабо кислых средах [70], а нередко и вообще неприменимой в случае материалов с надрезом (концентрацией напряжений [72—74]). Предельные линии на диаграмме потенциал— )Н (рис. 2.2) при статическом нагружении практически не изменяются. Напротив, при динамическом нагружении области пассивности исчезают. Кроме того, кривая I по мере снижения pH смещается в сторону более отрицательных потенциалов и при рН<4.  [c.74]

При коррозионном растрескивании под напряжением в слабо кислых средах, которое вызывается выделяющимся водородом, электрохимическая защита в общем случае не может дать эффекта [2]. Для пояснения этого на рис. 2.20 представлены кривые срок службы — потенциал для углеродистой стали в среде, содержащей сероводород [75]. При pH = 4 стойкость при катодной поляризации действительно заметно повышается (в некотором узком диапазоне потенциалов в результате образования поверхностного слоя FeS). Однако для длительного защитного действия этот эффект не может быть использован. По результатам измерений видно также, что по мере снижения потенциала, стойкость (по времени до разрушения) уменьшается. Анодная защита от коррозионного растрескивания под напряжением, вызываемого водородом, теоретически возможна, но нерациональна, поскольку при этом усилится равномерная поверхностная коррозия. Коррозионное растрескивание под напряжением под влиянием водорода в углеродистых и низколегированных сталях обычно может развиваться только в присутствии стимуляторов, которые не допускают рекомбинации выделившихся на катоде атомов водорода в молекулы Hj, вследствие чего в структуру материала может внедриться (диффундировать) повышенное количество водорода (см. рис. 2.1). К числу таких стимуляторов могут быть отнесены, например, гидриды элементов 5 и 6 групп Пери-  [c.75]

В большинстве случаев электрохимическая защита от коррозии сочетается с применением покрытий. У поврежденных участков покрытия может произойти отслоение изоляционной ленты. Доступ защитного тока к открытой поверхности стали затруднен. При анодной защите здесь возможно нарушение эффекта пассивации. Напротив, при катодной защите защитное действие ослабляется в меньшей степени или вообще не теряется. Возникающие в связи с этим проблемы — подрыв покрытия коррозией и образование пузырьков в нем — рассмотрены в разделе 6,  [c.76]

При электрохимической защите от коррозии резервуаров, сосудов—ре-акторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2,3.1.2 и рис. 2.12).  [c.378]

Применять методы электрохимической защиты от коррозии начали в первую очередь в химической промышленности около 15 лет назад вначале нерешительно, как это было и с применением катодной защиты подземных трубопроводов около 30 лет назад. Препятствие к более широкому применению заключалось главным образом в том, что внутренняя защита должна в большей мере выполняться по индивидуальным проектам, чем простая наружная защита подземных сооружений. В связи с возросшей важностью обеспечения повышенной надежности производственных установок, с ужесточением требований к коррозионной стойкости и укрупнением деталей и узлов установок начал проявляться интерес к электрохимической внутренней защите. Хотя на вопрос об экономичности защиты нельзя дать общего ответа (см. раздел 22.4), все же очевидно, что расходы на электрохимическую защиту будут меньше расходов на высококачественную и надежную футеровку (на покрытия) или на коррозионностойкие материалы. При этом анализе нельзя не отметить, что наде кная эксплуатация очень крупных выпарных аппаратов для щелочных растворов вообще стала возможной только благодаря применению внутренней анодной защиты, поскольку достаточно эффективный отжиг для снятия внутренних напряжений крупных резервуаров практически неосуществим, а конструктивные и эксплуатационные напряжения вообще не могут быть устранены.  [c.400]


Затраты на электрохимическую защиту от коррозии и экономический эффект от применения систем защиты зависят от весьма различных влияющих факторов, так что дать оценки, справедливые во всех случаях, здесь едва ли возможно. В частности, требуемый защитный ток и удельное электросопротивление среды вокруг защищаемого сооружения и анодных заземлителей могут колебаться в широких пределах и соответственно влиять на затраты. Обычно электрохимическая защита оказывается особенно экономичной в тех случаях, когда металлические сооружения должны быть сохранены в течение многих лет. Грубо ориентировочно затраты на сооружение системы катодной защиты для металлических конструкций, не имеющих защитных покрытий, можно принимать равными примерно 1—2 % строительной стоимости защищаемого объекта, а если поверхности имеют защитные покрытия, то соответствующие затраты составят приблизительно 0,1—0,2 % стоимости строительства объекта.  [c.413]

В настоящем разделе приведены материалы, позволяющие рассчитать распределение потенциала и тока при использовании систем электрохимической (протекторной, катодной и анодной) защиты металлов, а также электрические параметры покрытий и средств разъединения, применяемых для изоляции защищаемь(х металлов от коррозионной среды ияи друг от друга.  [c.191]

Электрохимическая защита металлов от коррозии основана на уменьшении скорости коррозии металлических конструкций вутём их катодной и анодной поляризации. Наиболее распространена так называемая катодная защита металла, которая мсшет осуществляться присоединением защищаемой металлической конструкции к отрицательному полюсу внешнего источника постоянного тока или к металлу, имеющему более отрицательный потенциал (протекторная. защита).  [c.36]

Автоматическая сетевая реверсивная катодная станция СКАР-1200 предназначена для электрохимической защиты металлических трубопроводов, находящихся в знакопеременных зонах блуждающих токов с периодическими большими значениями катодного и анодного потенциалов.  [c.131]

Как известно, для защиты металла от коррозии при отсутствии напряжений успешно применяется электрохимическая защита. Она производится с помощью протектора, изготовленного из значительно менее благородного металла, т. е. имеющего значительно более отрицательный электродный потенциал, чем металл защищаемого объекта или анодных покрытий (см. VI—8), или при помощи катодной поляризации защищаемого объекта от внешнего источника тока. Благодаря электрохимической защите местные коррозионные пары на металле должны перестать работать и весь защищаемый объект должен сделаться катодным. Основы электрохимической защиты разработаны и описаны Г. В. Акимовым [1, 2] и Н. Д. Томашевым [151].  [c.179]

Еще не так давно считалось, что возможен только один вид электрохимической защиты — катодная поляризация (или контакт защищаемой конструкции с более отрицательным металлом — анодным протектором). Возможность анодной электрохимической защиты полностью исключалась, так как обычно при наложении анодного тока увеличивается скорость растворения металла в соответствии с пропущенным количеством электричества (по Фарадею). Однако эти утверждения, вполне верные в отношении активных коррозионных систем, оказались несправедливыми для пассивирующихся коррозионных систем. Впервые метод анодной электрохимической защиты был предложен в нашей стране [150—152] и независимо от нас — вскоре в Англии [153—154], а затем позднее — в США [155—159]. Здесь мы разбираем полученные как в наших, так и зарубежных работах данные об исследовании и возможностях практического применения анодной электрохимической защиты.  [c.110]

Таким образом, при одновре-менном воздействии на металл коррозионной среды и переменных напряжений электрохимическая неоднородность металла резко возрастает, что. естественно, должно вызватг увеличение защитной плотности тока. Поскольку с увеличением напряжения возрастает разность потенциалов между катодными и анодными участками, то потребная плотност тока для защиты также должна, возрастать с повышением напряжения. Этот вывод прекрасно подтверждается результатами экспериментов [98],, гриведенными на фиг. 76.  [c.98]

Коррозионные диаграммы, приведенные на фиг. 6, позволяют качественно рассмотреть некоторые факторы электрохимической защиты. На фиг. 6, а представлены условия, когда скорость коррозии одного образца отличается от скорости другого, но их стационарные потенциалы одинаковы. Смещение потенциала на величину АЕ =АЕ" обуславливает равную степень защиты поляризующий же ток оказывается различным он выше для образца, корродирующего с большей скоростью. Условия коррозии, иллюстрируемые коррозионной диаграммой фиг. 6, б характеризуются одинаковой скоростью коррозии двух объектов защиты с отличающимися значениями стационарных потенциалов. При изменении потенциала конструкции на одинаковую величину АЕ =АЕ") имеем различную степень защиты. Так как АЕ"=Е1 Е°, наблюдается полная защита. Несмотря на равное изменение потенциала АЕ =Е — Е, до полной защиты еще далеко. На фиг. 6, в и г рассмотрено влияние поляризуе.мости катодных и анодных участков на условия зашиты. Как следует из фиг. 6, в наклон анодной поляризационной кривой е влияет на абсолютную величину за-  [c.16]

Для вывода математической зависимости между степенью защиты и плотностью защитного тока (или смещением потенциала в отрицательную сторону) необходимо воспользоваться уравнениями кинетики электродных процессов. Основными электрохимическими реакциями на корродирующем и подвергающемся катодной защите металле являются ионизация металла (анодный процесс), электровосстановление кислорода, разряд ионов водорода и металла (катодные процессы), уравнения скоростей которых приведены в табл.- 7. Их использование оказывается затруднительным, если базироваться на теории многоэлектродных систем, поскольку в практических условиях коррозии и защиты распределение поверхности на катодные и анодные участки, а также распределение внещнего ток по гетерогенной поверхности остается неопределенным. Вместе с тем вывод искомого соотношения оказывается возможным на базе гомогенно-электрохимических представлений о поведении металлов в условиях стационарной коррозии и поляризации внешним током.  [c.21]

К электрохимичским методам борьбы с коррозией относятся такие, в основе которых лежит принцип непосредственного воздействия на скорость протекания сопряженных катодных и анодных электродных реакций. Эффект электрохимических методов прежде всего выражается в изменении потенциала защищаемого металла. Изменение потенциала может быть вызвано катодной или анодной поляризацией, а также введением ингибиторов в среду. По этому признаку ингибиторы коррозии, вводимые в агрессивные растворы, можно классифицировать как электрохимический метод защиты. Однако обычно ингибиторы выделяют в особую группу методов, а к электрохимическим способам борьбы с коррозией относят катодную и анодную защиту.  [c.121]

Коррозионное растрескивание, представляющее собой сложный процесс разрушения металлов, происходящий в условиях одновременного воздействия на них электрохимической или (реже) химической коррозии и статических растягивающих напряжений [138]. Особая роль в этом процессе, обусловливающая механизм коррозионного растрескивания, принадлежит явлениям катодной и анодной поляризации увеличение плотности анодно-поляризирующего тока приводит к ускорению растрескивания, а катодная поляризация оказывает тормозящее воздействие на растрескивание вплоть до полной защиты металла. При этом происходят два коррозионных процесса. Один развивается на поверхности металла в результате работы обычных локальных микроэлементов. Второй сосредоточивается сначала во всевозможных первичных концентраторах напряжений, а затем и в растущих коррозионных трещинах. Первичными концентраторами напряжений могут служить риски, царапины, питтинги, язвы, границы между зернами (при неравномерной, избирательной или межкристаллитной коррозии), а также колонии дислокаций, перемещающихся к поверхности под влиянием механических напряжений.  [c.212]


Электрохимическая защита подразделяется на катодную и анодную защиту. Катодная защита осуществляется катодной поляризацией металлической конструкции с помощью внешнего тока или протекторов. Защита внешним током обы чно приме няется как дополнительная к изолирующему покрытию. Иногда такая защита применяется самостоятельно для предупреждения коррозии металлических сооружений в почве, а также аппаратуры в заводских условиях. Суть этого апособа защиты состоит в том, что защищаемую конструкцию пржоединяют к отрицательному полюсу внешнего источника постоянного тока.  [c.82]

Рассматриваются наиболее общие основы теории коррознн и электрохимической защиты металлов в природных и искусственных электролитах. Приводятся сведения о механизме, параметрах и критериях катодной и анодной защиты с использованием внешних источников тока и протекторов. Обсуждаются принципиальные схемы систем электрохимической защиты и примеры их применения.  [c.2]

По механизму защиты различают металлические покрытш( анодные и катодные. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий ие обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающем коррозионном элементе основной металл — покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счет растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как иравило, обладают сравнительно низкой коррозионной стойко-  [c.318]

Исходными данными для расчёта и проектирования электрохимической защиты (в то.м числе - катодной) являются совмещенный пла1 проектируемых и существующих подземных сооружений, а также рельсовых сетей электрифицированного транспорта в масштабе 1 2000 или 1 5000. По проектируемым и рассчитываемым сооружениям, а также по уже существующим должны быть указаны длина и диаметр сооружений по существующим сооружениям - места установки электрохимической защиты по рельсовым сетям- точки подключения отрицательных кабелей и существующих дренажных установок данные о коррозионной активности фунтов и о наличии блуждающих токов, геолого -геофафический разрез для выбора конструкций анодных заземлителей площадь территории.  [c.7]

Электрохимическая защита состоит в том, что при смещении электродного потенциала металла коррозионные процессы тормозятся. При этом различают два вида электрохимической защиты анодную и катодную. При анодной защите потенциал смещается в положительную сторону. Защитный эффект обусловлен пассивацией, при которой высокие положительные потенциалы достигаются очень малой анодной плотностью тока. Эффективность анодной защиты зависит от свойств металла и электролита. Основной конструкционный материал, применяемый в нефтегазовой промышленности, это низкоуглеродистая малолегированная сталь, которая слабо пассивируется в таких электролитах, как дренажная (подтоварная) вода в резервуарах, почвенная (грунтовая) влага. Изменчивость характеристики грунтов (минерализация водной фазы, состав газов и строение твердой основы) не позволяет успешно применять анодную защиту в таких условиях. Особое значение в анодной защите имеют ионы галогенов, способствующие образованию питтингов. В силу того, что в грунтах (например, солончаки). и пластовых водах содержится большое количество хлоридов, анодная защита для подземного оборудования нефтегазовой промышленности не применяется.  [c.73]


Смотреть страницы где упоминается термин Электрохимическая защита катодная и анодная : [c.335]    [c.28]    [c.114]    [c.416]    [c.420]    [c.358]    [c.91]    [c.77]    [c.136]    [c.183]    [c.300]    [c.47]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.47 ]



ПОИСК



V катодная

Анодная защита

Анодная электрохимическая защита

Анодный

Катодная защита

Электрохимическая защита

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте