Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гистерезис электрический

Контроль качества—оценка характеристик, определяющих качество (состав, структура, свойства). Контролируемые параметры магнитная проницаемость намагниченность насыщения форма петли гистерезиса электрическая проводимость.  [c.195]

Гиперболическая внешняя характеристика, получаемая при помош,и возбудителей с расщепленными Полюсами, не обеспечивает достаточно полного использования мощности дизеля из-за явления гистерезиса электрических машин, изменений тока возбуждения главного генератора при нагреве его обмотки независимого возбуждения, включения и выключения вспомогательных нагрузок и технологических отклонений при изготовлении возбудителей. Для полного использования мощности дизеля применяются узлы дополнительного автоматического регулирования мощности дизель-генератор а (АРМ). Например, на тепловозах ТЭЗ применен тахометрический узел автоматического регулирования мощности.  [c.95]


Чтобы удалить большинство растворенных в вольфраме газов, необходимо нагреть его в вакууме до температуры около 2200 °С и откачивать в течение примерно двух часов (здесь и в -последующем при обсуждении изменений в вольфраме приводится истинная температура, а не спектральная яркостная температура). После такой обработки основная часть оставшегося в стеклянной оболочке лампы газа будет появляться из молибденовых или никелевых вводов, которые остаются при более низкой температуре, или из стекла. Нагретый вольфрам выделяет следующие газы (в порядке их концентрации) азот, окись углерода и водород. Присутствие их в твердом растворе всегда увеличивает электрическое сопротивление металла. Если после отпайки лампы имеет место чрезмерная дегазация вольфрама, обычно наблюдается гистерезис соотношения со-противление/температура. Этот гистерезис происходит следующим образом. При высоких температурах газ выделяется из глубины металла диффузией к поверхности и испарением. При охлаждении тот же газ, если он не был удален откачкой или абсорбирован в другом месте, конденсируется на поверхности вольфрама и начинает диффундировать обратно в металл, увеличивая тем самым его сопротивление. Скорость, с которой происходят все эти процессы, является экспоненциальной функцией температуры. Для ламп, используемых в области до 1800 °С, дрейф сопротивления при охлаждении, скажем до 1200 °С, может происходить в пределах нескольких дней как результат недостаточной дегазации в начальной стадии или последующей течи.  [c.353]

У большинства ламп проявляется небольшой повторяющийся гистерезис в цикле от 1064 °С (теперь мы возвращаемся к спектральной яркостной температуре при 660 нм), который может доходить до 0,05°С. Однако это изменение яркостной температуры сопровождается изменением электрического сопротивле-  [c.358]

Изложенный Б предыдущем параграфе метод поэтапного рассмотрения, как указывалось, не накладывает никаких ограничений на нелинейность исследуемой колебательной системы и пригоден для любых законов затухания. Однако этот метод обычно приводит к громоздким вычислениям или сложным графическим построениям, причем полученные результаты относятся только к одному виду движения при заданных начальных условиях и не позволяют наглядно представлять общие особенности движений системы при различных условиях и разных значениях ее параметров. Поэтому весьма важно рассмотреть те приближенные методы, которые хотя бы для ограниченного класса колебательных систем могли бы дать единое решение для любого момента колебательного процесса при произвольных начальных условиях. Такого рода приближенный метод был в свое время предложен Ван дер Полем и получил в дальнейшем название метода медленно меняющихся амплитуд. Он позволяет весьма успешно исследовать класс колебательных систем с малой нелинейностью и малым затуханием. Электрические контуры с ферромагнитным сердечником при малых потерях на гистерезис в области значений амплитуд магнитного поля, далеких от насыщения, контуры с нелинейными емкостями при аналогичных ограничениях, линейные контуры с постоянными Ь и С при малых затуханиях (независимо от их линейности или нелинейности), многочисленные механические аналоги указанных выше высокодобротных линейных и нелинейных систем составляют тот класс систем, в которых движения можно приближенно рассчитывать методом медленно меняющихся амплитуд. Условия малой нелинейности подобных систем  [c.70]


Первые опыты по параметрическому резонансу производились в 30-е годы путем механического перемещения ферромагнитного сердечника внутрь катушки индуктивности колебательного контура. Используя нелинейную зависимость намагничивания сердечника от проходящего по вспомогательной обмотке тока, можно было и электрическим путем менять реактивный параметр контура. На этих принципах были построены тогде первые в мире параметрические машины (генераторы) Мандельштама и Папалекси. Однако из-за неизбежных больших потерь за счет петли гистерезиса и низких механических частот перемещения сердечника реализовать в те годы параметрическую регенерацию в диапазоне радиочастот для практических целей оказалось невозможным.  [c.151]

Подстановкой в уравнения (1-6) — (1-8) вместо в и р их комплексных значений будут учтены потери в материале и его нагрев за счет магнитного гистерезиса и переменной электрической поляризации. При этом сам вид уравнений останется неизменным.  [c.10]

Фермы кривых гистерезиса. Магнитные материалы различают прежде всего по форме гистерезисной кривой. Узкой петлей гистерезиса с небольшой площадью и высокой индукцией насыщения обладают магнитномягкие материалы. Материалы этой группы с округлой петлей применяются для сердечников трансформаторов и электрических машин ППГ — материалы с прямоугольной петлей гистерезиса для элементов памяти. Широкую петлю имеют (рис. 17.3) магнитнотвердые материалы с большой коэрцитивной силой они служат для изготовления постоянных магнитов. В этой главе рассматриваются магнитномягкие металлы и сплавы с округлой петлей гистерезиса.  [c.229]

Как было сказано выше (см. стр. 22), диэлектрическая проницаемость сегнетоэлектриков велика и имеет резко выраженную зависимость от напряженности поля и от температуры. Характерной особенностью сегнетоэлектриков является наличие у них диэлектрического гистерезиса (отставание изменений электрического смещения от изменений  [c.27]

Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

С и выше. К особенностям электрических свойств боратов бария следует отнести явление гистерезиса температурной зависимости электрического сопротивления при снятом и приложенном напряжении при температурах выше 450—500° С и последующем охлаждении.  [c.225]

Измерение электрических параметров, которые характеризуют температурные зависимости термистора, трудно выполнить точно из-за сложной конструкции элемента, его формы, высокой чувствительности к окружающей температуре и влияния непосредственного нагрева измерительными токами. Такие параметры, как зависимость вольт-амперной характеристики от температуры, электросопротивление при постоянной температуре, наличие температурного гистерезиса, полупроводниковые свойства и изменения констант материалов, часто измеряли с целью выяснения ухудшения свойств, зависящих от внешних условий. При исследовании облученных термисторов в большинстве случаев обычно учитывали влияние излучения только на вольт-амперную характеристику.  [c.359]


После стабилизации механической кривой гистерезиса однофазных металлов образуется в основном негомогенная дислокационная структура, состоящая из областей с низкой и большой плотностью дислокаций. Кроме стабилизации напряжения, при знакопеременной деформации растяжение — сжатие другие физические величины также показывают поведение насыщенности в зависимости от количества циклов, в частности коэрцитивная сила [1], интегральная ширина рентгеновских линий [2] и добавочное электрическое сопротивление [3].  [c.169]

Легированная сталь представляет собой сплавы железа, содержащие от 0,8 до 5 % 81, изготовленные в виде листов и лент толщиной 1 мм и менее. Легирование кремнием резко повышает удельное электрическое сопротивление, снижая потери на вихревые токи, увеличивает магнитную проницаемость, уменьшает коэрцитивную силу и потери на гистерезис. Электротехническую сталь применяют в магнитных цепях электрических машин, аппаратов и приборов, работающих на постоянном и переменном токе (генераторы, трансформаторы всех систем, дроссели, электромагнитные аппараты и приборы, счетчики электроэнергии, реле).  [c.134]

Устойчивая работа электромагнитных реле достигается сглаживанием пульсаций в сеточной и анодной цепях лампы с помощью емкостей, гистерезисом управления по току срабатывания и отпускания реле и геометрией расположения радиоактивной стрелки, экрана и счетчика. Минимальные взаимные расстояния стрелки, экрана и счетчика, а также применение Р-излучения создают большой градиент изменения потока излучения, попадающего на счетчик, на границе экрана при перемещении стрелки на доли миллиметра по шкале. Электрическая схема работает устойчиво при изменении напряжения в сети на + 15%.  [c.260]

Основные требования, предъявляемые к системе (упругий элемент—первичный преобразователь), следующие обеспечение линейности выходной характеристики (зависимости выходного электрического сигнала от величины измеряемых усилий), малого значения механического гистерезиса применяемых материалов, хорошей временной и температурной стабильности выходного сигнала. Кроме того, уровень взаимного влияния воздействующего усилия по координатным направлениям должен быть не хуже 20—30 дБ.  [c.178]

Источники погрешностей тензометра с механическим увеличением деформаций при статических изменениях — несовершенство, неправильный выбор типа и характеристик тензометра, ошибка тарировки, неправильная установка прибора и дефекты в контактах с поверхностью детали, особенно при знакопеременных деформациях и перемещениях (проявляются как гистерезис), изменения температуры, зазоры в соединениях рычажного механизма, упругий гистерезис и последействие в приборах с рабочим упругим элементом при динамических изме рениях, кроме того, — трение в движущихся частях прибора, влияние массы подвижных частей (увеличение массы снижает частоту деформаций, которые можно регистрировать), недостаточная жесткость крепления датчика на детали. Источники погрешностей электрического тензометра, кроме указанных для тензометра с механическим увеличением, связаны с нарушением стабильности питания, влиянием внешних электрических и магнитных полей, погрешностями от регистрирующей аппаратуры.  [c.544]

Намагниченности насыщения ферритов сравнительно не велики. Наибольшим магнитным моментом из всех известных ферритов при комнатной температуре обладают кобальтовый и марганцевый ферриты 4яМ = 5300 и 5000 гс, соответственно. Однако даже эта величина составляет менее одной четверти намагниченности железа. Значительно меньше намагниченность у литиевого (3900) и никелевого (3400 гс) ферритов. Твердые растворы марганцевого и магниевого ферритов характеризуются меньшими намагниченностями, чем марганцевые ферриты, однако, обладают рядом других достоинств. Например, коэффициент прямоугольности некоторых из этих составов ферритов достигает 0,9- 0,95 при сравнительно низкой коэрцитивной силе 0,5-н-1 э. Ферриты с прямоугольной петлей гистерезиса могут применяться в вычислительной технике. Магний-марганцевые ферриты другого состава с малыми потерями в быстропеременных магнитных полях применяются в различных устройствах на сантиметровых волнах. Иттриевые ферриты обладают очень малыми электрическими и магнитными потерями на сверхвысоких частотах и поэтому широко применяются в СВЧ устройствах.  [c.37]

Во-первых, магнитные свойства постепенно падают по мере приближения к точке превращения, и эта точка не отвечает скачкообразному изменению свойств. Во-вторых, магнитное превращение не имеет температурного гистерезиса. Увеличение скорости охлал<дения не снижает температуры превращения. В-третьих, механические и некоторые физические свойства при превращении не изменяются (изменяются многие электрические магнитные и тепловые свойства). Наконец, в-четвертых, самое важное магнитное превращение не сопровождается перекристаллизацией— образованием новых зерен, и изменением решетки.  [c.59]

Диэлектрический гистерезис — неоднозначная зависимость поляризованности диэлектрика от напряженности внешнего электрического поля при его периодическом измене1ши.  [c.105]

Магнитострнкционные материалы. Основными характеристиками магнитострикционных материалов (см. табл. 27.32), применяющихся для изготовления магнитострикционных преобразователен, являются коэффициент магнитомеханической связи К, квадрат которого равен отношению преобразованной энергии (механической или магнитной) к подводимой (соответственно магнитной или механической), динамическая маг-гщтострикционная постоянная a=(da/dS)s и маг-ьитострикционная постоянная чувствительности Л= ((ЗВ/а)где а — механическое напряжение, Я/м , В — магнитная индукция, Тл, а индексы и Я означают неизменность деформации и магнитного поля. Величина а существенна для работы излучателей, а Л — для работы приемников. Плотность р и модуль Юнга Е определяют резонансную частоту преобразователей от механической прочности, магнитострикции насыщения X и индукции насыщения Вь зависит предельная интенсивность магнитострикционных излучателей механическая добротность Q, удельное электрическое сопротивление р.-,л и коэрцитивная сила Не определяют потери энергии на вихревые токи и гистерезис при работе преобразователя. Значения К, а, Л существенно зависят от напряженности подмагничивающего поля, значение которого Яопт, отвечающее максимуму К, обычно называют оптимальным.  [c.615]


Как известно, для конденсаторов с сегнетоэлектриком характерно отсутствие прямой пропорциональности между зарядом и напряжением на его обкладках. Пренебрегая гистерезисом, можно качественно изобразить эту зависимость в виде графика рис. 1,6. Для каждого конкретного случая ее легко получить экспериментально, и она представляет собой характеристику нелинейного элемента колебательной системы. Здесь следует иметь в виду, что свойства конденсатора с сегнетоэлектриком существенно зависят от типа применяемого сег-нетоэлектрика, который обладает определенной инерционностью, связанной со скоростью изменения заряда, что приводит к частотной зависимости емкости конденсатора. Поэтому нелинейные характеристики таких конденсаторов могут существенно изменяться при значительном увеличении частоты электрических колебаний в контуре, содержащем нелп-нейлый элемент.  [c.29]

Экспериментальная установка. В рассматриваемой работе исследуется кривая кипения, охватывающая все режимы кипения. Проведение опытов с прямым и обратным переходом одного режима в другой позволяет установить явление, носящее название гистерезиса кипения. Процесс кипения осуществляется на поверхности тонкостенной обогреваемой трубки 2, находящейся внутри металлического сосуда 1, заполненного хладоном (рис. 4.15). Опытная трубка, выполненная из стали 1X13 диаметром 1,52 мм и длиной 145 мм, расположена в сосуде горизонтально. Обогрев ее осуществляется непосредственным пропусканием электрического тока. Одним из токоподводов служит медная шина, припаянная к торцу опытной трубки. При этом приняты меры, обеспечивающие герметичность и электрическую изоляцию токоподвода на выходе из сосуда.  [c.180]

Сегнетоэлектрики обладают нелинейными свойствами вследствие изменения их диэлектрической проницаемости при изменениях напряженности электрического поля заряд сегнетоэлектрического конденсатора нелинейно изменяется с изменением напряжения. Эта нелинейность связана с тем, что при циклическом изменении наиряжения заряд сегне-тоэлектркческого конденсатора изменяется по закону петли гистерезиса (рис. 2-8). При увеличении напряжения от нуля происходит увеличение заряда по первоначальной кривой зарядки, достигающей насыщения при снижении напряжения уменьшение заряда происходит с большим отставанием  [c.40]

Кремнистая электротехническая сталь содержит углерода менее 0.05 6 и кремния от 0,7 до 4.8 % п относится к магнитомяг-ким материалам широкого потребления. Легирование стали кремнием приводит к существенному ловышению удельного электрического сопротивления, которое растет линейно от 0,1 мкОм-м при нулевом содержании кремния до 0,60 мкОм-м при содержании кремния 5,0 %, к увеличению [im и Цгтах. уменьшению Н , снижению потерь на гистерезис. Сталь с содержанием кремния 6,8 % овладеет наивысшей магнитной проницаемостью, но в промышлен1 рсп  [c.93]

Для изготовления нелинейных конденсаторов применяются другие сегнетоэлектрические материалы, обладающие резко выраженными нелинейными свойствами — сильной зависимостью диэлектрической проницаемости от напряженности электрического поля. Такие материалы называются варикондами. Вариконды предназначены для управления параметрами электрических цепей за счет изменения их емкости. Сегнетоэлектрики, петля гистерезиса которых по форме близка к прямоугольной, например, такие, как тригли-цинсульфат (ТГС), можно применять в запоминающих устройствах ЭВМ.  [c.244]

Спонтанная поляризация — это поляризация диэлектрика, возникающая при отсутствии внешнего электрического поля. Поляризация нелинейно зависит от напряженности электрического поля и характеризуется явно выраженным, большим максимумом при некоторой определенной температуре. Характерна для диэлектриков кристаллических структур, имеющих области (домены) с легко поляризующимися и длительно сохраняющими поляризованность кристаллическими системами, находящимися в большой зависимости от температуры вплоть до точки Кюри, при которой отмечается наивысшее поляризованное состояние и соответствуютцая ему максимальная диэлектрическая проницаемость. При более высокой температуре происходит структурное изменение в доменах и диэлектрическая проницаемость резко сни-лшется, а спонтанная поляризация исчезает. Эта поляризация имеет замедленный, характер, при высоких частотах не происходит, имеет диэлектрический гистерезис и характерна для сегнетоэлектрнков (ти-танаты бария, кальция, стронция).  [c.9]

Рассматриваемые материалы представляют собой монокристаллы или поликристаллические вещества, в которых спонтанная поляризация при температурах ниже температуры фазового перехода е — точки Кюри может изменяться под воздействием внешнего электрического поля. К характерным особен1Юстям таких материалов при темпера-.туре Т<0 относятся наличие доменной структуры, диэлектрического гистерезиса и остаточной поляризованности после снятия поля  [c.153]

Вследствие более яркого проявления поверхностного эффекта значения электрических сопротивлений и мощности очевидно будут большими, чем вычисленные по формулам для р = onst при том же значении В общем случае следует, как это сделал в своей работе академик Л. Р. Нейман [22], учитывать и явление гистерезиса. Однако расчет показывает, что уже при Я > 5 -10 а м потери на гистерезис пренебрежимо малы по отношению к мощности, определяемой током проводимости, и с увеличением напряженности магнитного поля доля их продолжает уменьшаться. Так как при индукционном нагреве Я>5-Ю -й/ж, то гистерезис мы в расчет принимать не будем.  [c.49]

Магннтомягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи а трансформаторах используют магнитомягкие материалы с повышенным удельным электрическим сопротивлением, обычно приме-4ЯЮТСЯ магнитопроБоды, собранные из отдельных изолированных фуг от друга тонких листов.  [c.275]

При уходе атома из узла решетки возможио efo внедрение в решетку. Атомы внедрения — это избыточные атомы, прошедшие в решетку, но не занимающие ее узлов. Небольшие атомы водорода, углерода, кислорода и азота легко образуют дефекты внедрения и решетках металлов. Более крупные дефекты — линейные дислокации и поверхностные дефекты наружная яовер.хность тела, границы зерен и другие внутренние границы. Дефекты структуры оказывают сильное влияние яа электрическую проводимость, прочность, потери на гистерезис в ферромагнитных материалах.  [c.33]

При экспериментальном исследовании усталостных явлений наблюдаются возникновение, агломерация и аннигиляция точечных дефектов. Измерением электрического сопротивления в различных точках механической кривой гистерезиса найдено обусловленное деформацией дополнительное сопротивление в состоянии разгрузки. Кривые дополнительного сопротивления изменяются качественно с количеством циклов. При небольшом количестве циклов N = 200 и бд = 3 10—3 результирующая кривая пересекается при вр = о, а при высоком количестве циклов N 500 при вр = а для обоих полуциклов появляются разные значения сопротивления. Первый тип кривой в основном можно объяснить измерением плотности дислокации в областях низкой дислокационной концентрации, а за второй тип преимущественно отвечают вакансии и вакан-сионные скопления.  [c.427]


Магнитно-мягкие стали и сплавы предназначены для изготовления деталей лагнитопроводов переменного магнитного поля, создаваемого переменным электрическим током, и поэтому должны обладать способностью намагничиваться до насыщения даже в слабых полях (высокая магнитная проницаемость) п пметь малые потери на перемагннчивание и гистерезис и вихревые  [c.71]

Качество, термообработки, навивки и нанесения иежвитковой изоляции в леиточ-ном сердечнике контролируется магнитными и электрическими параметрами, В изготовленных и термически обработанных рдечниках потери мощности (на гистерезис и вихревые токи), величина заданной индукции В и магнитная проницаемость, х долл<ны находиться в пределах допусков, установленных техниче-СКИ1 И1 усл )виями.  [c.833]


Смотреть страницы где упоминается термин Гистерезис электрический : [c.68]    [c.10]    [c.292]    [c.92]    [c.158]    [c.158]    [c.243]    [c.173]    [c.303]    [c.224]    [c.17]    [c.254]    [c.249]    [c.156]    [c.157]   
Физика твердого тела (1985) -- [ c.299 ]



ПОИСК



Гистерезис



© 2025 Mash-xxl.info Реклама на сайте