Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющая сталь точечная

Один из характерных видов коррозии нержавеющих сталей — точечная коррозия. Обычно эта коррозия имеет место в растворах, в которых наряду с пассиваторами присутствуют активирующие ионы, например С1 . Большая часть поверхности металла при этом  [c.160]

Для аустенитных сплавов интервал сенсибилизирующих температур составляет 400—850 °С. Степень склонности к межкристаллитной коррозии после такого нагрева зависит от времени нагрева. Несколько минут нагрева при температурах вблизи 750 °С эквивалентны нескольким часам при более низких (или еще более высоких) температурах (рис. 18.1) [13, 14]. К межкристаллитной коррозии приводят медленное охлаждение сплава с прохождением области сенсибилизирующих температур, а также длительные сварочные работы. При быстром охлаждении этого не происходит. Следовательно, аустенитные нержавеющие стали нужно закаливать от высоких температур, и это, как правило, выполняется. Точечная сварка, при которой металл быстро нагревается в результате кратковременного протекания электрического тока и затем быстро охлаждается, не вызывает сенсибилизации. В то же время электродуговая сварка может предста-  [c.303]


Теплопроводность тантала в три раза выше теплопроводности нержавеющих сталей. Температура его плавления равна 2996°С. Тантал устойчив в кислотах "и других агрессивных средах. По устойчивости его можно сравнить с платиной и кислотостойким стеклом. Для тантала характерна равномерная коррозия. Он не поддается точечной коррозии. Тантал используется для обкладки других металлов.  [c.152]

ТОЧЕЧНАЯ КОРРОЗИЯ НЕРЖАВЕЮЩИХ СТАЛЕЙ  [c.63]

Хромоникелевая нержавеющая сталь хорошо сваривается как точечной, так и дуговой  [c.489]

Режимы (жёсткие) точечной сварки нержавеющей стали типа 18 Сг—8 N1 [64]  [c.373]

Искровой импульс применяется для сварки различных металлов между собой алюминия со сталью, серебра с медью, меди с алюминием, немагнитной или специальной стали с обычной сталью или цветными металлами и т. д. Возможность строгой дозировки энергии, посылаемой к месту точечной сварки, позволяет осуществить целый ряд технологических операций при сварке весьма тонких изделий из вольфрама, нержавеющих сталей и сплавов алюминия, а также при приварке тонких изделий к толстым.  [c.69]

На фиг. 42 показано поперечное сечение вагона, построенного из нержавеющей стали 18-8 с помощью точечной сварки. Конструкция кузова несущего типа.  [c.673]

Точечная ) Малоуглеродистая сталь Конструкционная легированная сталь Нержавеющая сталь Алюминиевые сплавы Жаропрочные сплавы < 12 < 10 < б <3 <3 Нахлестка При использовании переносных устройств (клещей, пистолетов и т. п.) любое  [c.223]

Цинк в набивках применяется главным образом для защиты от коррозии сальников паровых клапанов. Цинк препятствует появлению точечной коррозии нержавеющей стали, применяемой для клапанных штоков такая коррозия создается гальваническими эффектами и обычно возникает при складском хранении.  [c.139]

Тип точечной из конструкции онных и нержавеющих сталей, жаропрочных сплавов и титана из легких сплавов Краткая характеристика  [c.264]

Меднение применяют для заготовок, подвергаемых большой суммарной деформации. Оно нежелательно для производства изделий, предназначенных для длительной эксплуатации, так как в местах нарушения медного слоя возникают микрогальванические пары, приводящие к точечной коррозии основного металла. Иногда меднение осуществляют электролитическим путем, особенно при обработке нержавеющих сталей [331].  [c.198]

Точечная коррозия часто наблюдается в морской воде, особенно при отложении на поверхности нержавеющих сталей морских микроорганизмов и ракушек [479].  [c.633]


Отмечается, что в растворах солей, не содержащих кислорода, у нержавеющих сталей не наблюдается точечной коррозии. В присутствии кислорода или окисляющих веществ в растворах солей часто создаются благоприятные условия для точечной коррозии.  [c.634]

В средах с высоким содержанием хлоридов отмечается протекание локальной коррозии большинства металлических материалов, в том числе нержавеющих сталей. Наиболее часто встречающейся формой локальной коррозии в морской воде является питтингообразование. Причиной появления питтингов, по-видимому, следует считать точечную перфорацию пассивной пленки на поверхности металла вследствие образования растворимых хлоридных комплексов. Внутри очагов коррозии отмечается локальное понижение pH, связанное с гидролизом продуктов коррозии.  [c.14]

Сварка ультразвуком позволяет соединять различные металлы хорошо свариваются ультразвуком алюминий, медь, никель, удовлетворительно свариваются нержавеющие стали. При этом прочность сварных точечных соединений достаточно высока, разрушение соединений происходит обычно с вырывом точки по контуру как при испытаниях на срез, так и при испытаниях на отрыв.  [c.24]

Особо следует остановиться на поведении пассивных металлов и соотношении поверхностей контактирующих металлов. Сплавы, подобно нержавеющим сталям, которые в морской воде могут находиться как в активном, так и в пассивном состоянии, оказывают различное влияние. Будучи в пассивном состоянии, они усиливают коррозию менее благородных металлов, таких как алюминий, сталь и медные сплавы. Если же они находятся в активном состоянии, то претерпевают сами сильную коррозию при контакте с материалами, обладающими более положительным, чем они сами в активном состоянии, потенциалом (медные сплавы, титан, хастеллой и т. д.). В связи с этим наблюдается часто при развитии питтинговой коррозии сильная коррозия нержавеющих сталей при контакте их с более благородными металлами. При контакте нержавеющих сталей с такими неблагородными металлами, как малоуглеродистая сталь, цинк, алюминий, потенциал которых отрицательнее потенциала нержавеющих сталей в активном состоянии, последние электрохимически защищаются. Аналогичным образом можно добиться защиты от общей и точечной коррозии и менее легированных сталей. В частности, сообщается, что крыльчатки из хромистой стали Х13 обнаруживают высокую стойкость в насосах с чугунными корпусами при перекачке морской воды.  [c.171]

Для предупреждения коррозионных поражений металла в широких зазорах следует применять смазки с различными наполнителями. При использовании в качестве наполнителей порошков цинка, олова, никеля, свинца и малоуглеродистого феррохрома (69,5% Сг, 0,05% С, остальное Fe) коррозионные разрушения нержавеющих сталей в зазорах и щелях обычно заметно уменьшаются. Наилучшим наполнителем оказывается малоуглеродистый феррохром. Применение в качестве наполнителя порошков магния, алюминия, сурьмы, молибдена, вольфрама, меди, кремния, ферросилиция, высокоуглеродистого феррохрома (69,6% Сг, 4,7% С, 1,1% S, остальное Fe), кремнезема, окиси железа, окиси марганца и окиси хрома не предохраняет нержавеющие стали от коррозии в морской воде. На аустенитных сталях в этом случае возникает сильная точечная коррозия.  [c.258]

Один из характерных видов коррозии нержавеющих сталей — точечная коррозия, которая наблюдается в том случае, когда металл находится на границе пассивного и активного состояний. Обычно эта коррозия происходит в растворах, в которых наряду с пасснваторами присутствуют активные ионы, например С1 . Большая часть поверхности металла при этом остается пассивной, но в наиболее слабых местах (интерметаллические и другие включения, механические повреждения защитной пленки и др.) под действием активных ионов пассивная пленка нарушается и металл корродирует.  [c.125]


Для нержавеющих сталей точечная коррозия наблюдается в слабо кислых растворах при наличии в них хлор- или бром-ионов. При недостатке кислорода, например, в узких зазорах, щелях, в местах контакта с про-кладочр-ым и изоляционным материалом точечная коррозия часто принимает весьма серьезный характер.  [c.512]

Основная часть опытов по изучению особенностей теплообмена между погруженной поверхностью и псевдоожиженным слоем под давлением была выполнена в аппарате (рис. 3.16), представляющем собой цилиндрическую колонну 5 из нержавеющей стали марки Х18Н10Т с внутренним диаметром 105 мм и высотой рабочей зоны 0,450 м. Внутри его на расстоянии 80 мм от нижнего фланца крепилась газораспределительная решетка 8. выполненная из листовой нержавеющей стали с отверстиями 0 1 мм, живое сечение порядка 4,5%, и ситовой сетки из нержавеющей стали с ячейками 40X Х40 мкм, которая приваривалась точечной сваркой по  [c.103]

Берман [116] измерял х у сплавов СпбО —Ni40 и нашел, что ниже 10° К 2-10 Т . Он исследовал также отклонения /.ц от закона Т , которое предположительно приписал влиянию точечных дефектов решетки для нейзильбера и нержавеющей стали были получены аналогичные результаты.  [c.293]

А. Пятнами, язвами, точками (питтинг). Эти виды различаются по соотношению диаметра разрушенного участка к его глубине (см. рис. 1, в, г, д). Язвы и пятна образуются на участках, где защитный слой недостаточен, порист или поврежден. Точечная коррозия типична для пассивирующихся металлов,— хрома, алюминия, нержавеющих сталей и др. Питтинг возникает, когда в агрессивной среде одновременно присутствуют окислитель, являющийся пассиватором, и ионы хлора, сульфат-ионы или другие ионы, играющие роль депассиваторов.  [c.4]

Травитель 20 [50 мл НС1 5 мл HNO3 0,15—2 мл ингибитора коррозии 50 мл HjO]. Этот травитель, широко используемый для нержавеющих сталей, впервые предложен Гоереном [12]. Добавка ингибитора содействует равномерному выявлению структуры. Применение реактива требует некоторого опыта необходимо подбирать концентрацию ингибитора, иначе может проходить точечная коррозия. Травление производят при температуре около 50° С [13 ].  [c.114]

По характеру разрушения коррозия штоков может быть как общей, так и местной (точечная или питтинг). Образование точечной коррозии связано с нарушением пассивного состояния стали, легко активизируемой хлор-ионами, находящимися в значитетьном количестве в технической воде и набивке, содержащей асбест. Устойчивое пассивное состояние нержавеющих сталей в растворах хлоридов зависит от состава сплава, его структуры, а также от состава электролита.  [c.71]

Коррозионные свойства хромистых сталей во многом зависят от содержания в них углерода. При увеличении содержания углерода до 0,3-0,4 % в сталях с 13-15%-ным содержанием хрома наблюдается резкое понижение коррозионных свойств. Следует иметь в виду, что высокохромистые стапи после закалки имеют более высокую коррозионную устойчивость, чем в отожженном состоянии. Никель сам по себе легко активируется ионами хлора, однако введение его в сплав железо-хром резко повышает сопротивление сплава активирующему действию хлоридов благодаря приданию стали аустенитной структуры, обладающей повышенной стойкостью в растворах хлоридов, т.е< стойкостью к точечной коррозии. Наиболее устойчиво сохраняется в растворах хлоридов пассивное состояние стали с полностью аустенитной структурой. Молибден и кремний препятствуют активированию нержавеющих сталей ионами хлора.  [c.72]

Установлено [30], что точечная коррозия возникает в основном в первые 15-30 мин и если точек поражения не вскрьшать, то новые не появляются. Если же после каждого цикла такие точки вскрьшать и этим прекращать их рост, на поверхности нержавеющих сталей появляются новые очаги коррозии.  [c.72]

Точечная коррозия в нержавеющих сталях вызывается местным нарушением пассивности металла в результате образования микрогальванопор. Чаще всего она возникает в растворах, содержащих ионы хлора, которые обладают большой способностью проникать сквозь пленку, К таким растворам относятся хлорное железо, стоячая и загрязненная морская вода. Если продукты коррозии тщательно не удаляются с поверхности металла и остаются, например, на дне углубления или трещины, то большая разность потенциалов в этих участках (ячейках) продолжает сохраняться, и точечная коррозия распространяется дальше в глубь металла.  [c.63]

В атмосферных условиях и в условиях повышения влажности ненагру-женные детали из мартенситных нержавеющих сталей не подвергаются заметной коррозии. Однако исследования коррозионной стойкости при повышенных температурах (образцы нагревали до 250 или 350°С, окунали в 3 %-ный раствор Na I и переносили во влажную камеру, где при 50°С выдерживали 22 ч. Затем цикл повторялся. База испытаний составляла 30 суточных циклов) с периодическим смачиванием 3 %-ным раствором Na I показали, что эти стали подвержены точечной коррозии. Общим иеж-ду исследованием выносливости сталей при повышенных температурах и периодическом их смачивании коррозионной средой, определением коррозионной стойкости без приложения к образцам внешних нагрузок при повышенных температурах и периодическом смачивании является то, что в обоих случаях металл поверхностных слоев образцов подвержен усталости вследствие резко циклического изменения температуры с большим градиентом. Определение коррозионной стойкости сталей при периодическом смачивании коррозионной средой может дать качественную картину влияния химического состава и структуры стали на ее коррозионно-механическую стойкость при повышенных температурах.  [c.109]


Фирма Иарресерч Мануфактуринг [244 ] применяет рубиновые лазеры для сваривания микроэлементов из нержавеющей стали в герметически закрытом баллоне термистора, а также лазеры на ИАГ для точечной сварки эмалированного провода.  [c.137]

Сульфоуголь вырабатывается двух сортов — мелкий и крупный. При применении мелких сортов загрузку их в фильтр следует производить на подстилочный слой антрацита фракции 0,6—1,0 мм высотой 75—100 мм. Без этого мелкие фракции (<0,4 мм) будут уходить в дренаж, так как ширина щелей в колпачках ВТИ и в накладках ТКЗ равна 0,4 0,1 мм. Сульфоуголь, равно как и другие катиониты, поставляется в водородной форме. Это значит, что если через такой сульфоуголь профильтровать воду, то она будет кислой. На одной катионитной установке прибывший катионит КУ-1 загрузили в фильтр, стенки которого имели противокоррозионную защиту, а нижнее дренажно-распределительное устройство было изготовлено из стали 1Х18Н9Т. Загрузку производили в исходную воду, сухой остаток которой достигал 800—900 лг/л. Фильтры с залитым водой КУ-1 закрыли и законсервировали на некоторое время , полагая, что коррозионные процессы будут исключены. Примерно через 6 мес. оказалось, что дренажные устройства были разрушены точечной коррозией. Этот пример показывает, что новый (поставленный заво-дом-изготовителем) катионит, загруженный в фильтр, должен быть отмыт до щелочной реакции и уж после этого фильтр может быть поставлен в резерв. Следует иметь в виду, что нержавеющие стали при некоторых условиях подвергаются точечной коррозии. К таким условиям относятся слабокислая среда, присутствие в ней хлор-ионов и окислителей (кислорода).  [c.107]

Метод температурных волн применяется для исследования температуропроводности как хороших [Л. 1—3], так и плохих проводников тепла 1[Л. 4—7]. Применительно к металлам и другим проводникам в твердом состоянии опытным образцам придается форма стержней постоянного поперечного сечения. На одном конце осуществляется периодическое нагревание. Металлы в жидком состоянии помещаются в тонкостенные трубки. В Л. 1] для этой цели применяются трубки из нержавеющей стали длиной 2Э0 мм и диаметром 8,6 мм. В оба конца трубки ввариваются пробки. Жидкий металл заливается в трубку через отверстие, сделанное в верхней пробке в условиях вакуума. Между уровнем жидкого металла в трубке и верхней пробкой оставляется некоторый компенсационный объем. На верхнем конце образца помещается обмотка импульсного электрического нагревателя, в цепь которого включается прерыватель. Питание импульсного нагревателя осуществляется через стабилизатор напряжения. Температура образца измеряется с помощью двух термопар, спаи которых привариваются точечной сваркой к поверхности опытной трубки. Постоянная составляющая ТЭДС измеряется потенциометром ППТН-1 переменные составляющие записываются электронным потенциометром типа ЭПП-09.  [c.97]

Ю. И. Казеннова, ванадий вызывает точечную газовую коррозию сварных швов стали типа 18-8 даже при 650—700° С. В литературе, посвященной окали ностой кости высоколегированных сталей и сплавов, также указывается на отрицательное действие ванадия. Так, например, приводятся данные о том, что присутствие пятиокиси ванадия в газовой среде вызывает при 750° С чрезвычайно сильную газовую коррозию аустенитных сталей. Так, например, потери веса стали 25-20 за 20 ч составили около 20 кПсм . Указывают, что сплавы, легированные молибденом, вольфрамом и ванадием, при контактировании с газовой средой, содержащей пары окислов этих элементов, окисляются очень быстро. Особенно энергичное действие оказывают окислы ванадия. Хромистая нержавеющая сталь, содержащая 2% V, окисляется при 870—900° С вдесятеро быстрее, чем обычная нелегированная углеродистая сталь. Аустенитные стали предлагают защищать от газовой коррозии в присутствии окислов ванадия силицированием, их поверхности. Проводились испытания литых образцов хромоникелевых аустенитных сталей на газовую коррозию при 800—1000° С. Установлено, что наилучшим является сплав типа 28 Сг—9Ni. При более высоком содержании никеля скорость коррозии в среде, содержащей серу, возрастает. Кремний и алюминий уменьшают скорость коррозии, а молибден и ванадий  [c.287]

Титан обладает высокой коррозионной стойкостью в средах, содержащих свободный хлор, хлористые соли. Титан следует применять в растворах хлоридов, гипохлоридов, морской воде и т. п., где у нержавеющих сталей наблюдается сильная точечная коррозия.  [c.500]

Применяется при травлении стальных изделий [283]. Защищает от коррозии стали ЗКП, ОВКП, Ст. 20 (трубы), телеграфную, ЗОХГСА, 1Х18Н9Т, Ю-3 [282]. Полностью предотвращает точечную и межкристаллитную коррозию швов нержавеющей стали 1Х18Н9Т, выполненных дуговой сваркой [278], как при обычной температуре, так и в условиях кипения растворов [272].  [c.73]

Нержавеющие стали нередко подвергаются точечной коррозии, иногда с перфорацией стенки аппарата. В частности, такой вид коррозии наблюдается в уксусной кислоте, если последняя разбавляется промышленной хлорированной водой, а также в холодильных рассолах и в других средах, содержащих ионы хлора. Хромоникелемолибденовые стали типа Х18Н12М2Т (ЭИ171), как правило, менее подвержены точечной коррозии, чем стали, не содержащие молибдена.  [c.151]

Исходя из высказанной рядом исследований точки зрения о конкурирующей абсорбции между ионами-активаторами и ионами — пассиваторами на нержавсталях не исключено, что-наблюдаемая нами область пассивного состояния сплавов на кривых может быть результатом одновременного влияния С1-и СО ионов. Заводские испытания образцов сталей и сплавов в аппаратах реакторного отделения получения углекислого стронция свидетельствуют о том, что Состав сталей оказывает существенное влияние на их склонность к точечной коррозии. Сталь и чугун являются нестойкими материалами по величине коррозии. Из всех рассматриваемых нержавеющих сталей наименее стойкими к точечной коррозии в суспензии углекислого стронция, содержащей хлориды, являются стали 12X17, 15Х17АГ14 и  [c.21]

Гравиметрический метод для характеристики точечной коррозии совершенно непригоден (исключение составляют системы типа нержавеющая сталь в растворе Fe ls, когда коррозия практически полностью сосредоточена в питтингах). Используют электрохимические методы и различные способы определения глубины коррозионных поражений.  [c.18]

Точечная коррозия нержавеющих сталей 2—20 Травление алюминиевых сплавов размерпоеЗ—354  [c.523]


Смотреть страницы где упоминается термин Нержавеющая сталь точечная : [c.163]    [c.197]    [c.176]    [c.16]    [c.117]    [c.189]    [c.124]    [c.255]    [c.8]    [c.82]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.20 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Определение склонности нержавеющих сталей к точечной коррозии

Сталь нержавеющая

Точечная коррозия нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте