Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодная пассивация частичная

Для того чтобы такой элемент мог эффективно работать, следует соблюдать ряд условий. Во-первых, необходимо, чтобы в системе был деполяризатор, который восстанавливался бы с большой скоростью и мог поддерживать течение анодной реакции в питтинге. Обычно таким деполяризатором является кислород или другой окислитель. Некоторые исследователи полагают, что чем больше концентрация окислителя, тем выше будет интенсивность точечной коррозии. На самом деле, как было показано, существует какая-то оптимальная концентрация окислителя, зависящая от концентрации активатора, при которой наблюдается максимальная питтинговая коррозия. Это объясняется тем, что увеличение концентрации окислителя не только усиливает скорость катодного процесса, но одновременно уменьшает вероятность нарушения пассивного состояния в слабых местах. Кроме того, даже в большинстве точек, где началась питтинговая коррозия, при наличии высокой концентрации окислителя процесс со временем приостанавливается, очевидно, в результате частичной анодной пассивации. Лишь в тех точках, где возникающая анодная плотность тока недостаточна для того, чтобы сильно замедлить анодный процесс, коррозия с увеличением концентрации окислителя продолжает непрерывно расти вследствие большой скорости катодного процесса.  [c.307]


Анодные ингибиторы тормозят только анодный процесс, уменьшая скорость перехода ионов металла в раствор и сокращая активные части электрода вследствие пассивации. Если же процесс коррозии частично контролируется скоростью катодной реакции, а ингибитор подавляет анодную реакцию, уменьшая активную часть электрода, интенсивность коррозионного разрушения может увеличиваться. При этом анодный ингибитор может оказаться опасным, если концентрация его  [c.43]

Рис. 20.11. Зависимость процесса пассивации от хода кривой катодный частичный ток потенциал / — кривая анодный частичный ток — потенциал 2 и J — кривые катодный частичный ток — потенциал без локального анода и при наличии локального анода соответствен но Рис. 20.11. Зависимость процесса пассивации от хода кривой катодный частичный ток потенциал / — <a href="/info/168213">кривая анодный</a> частичный ток — потенциал 2 и J — кривые катодный частичный ток — потенциал без локального анода и при наличии локального анода соответствен но
Действие анодных импульсов обратного тока в зависимости от создаваемой ими поляризации заключается в частичном растворении покрытия и обогащении прикатодного слоя ионами металла или в пассивации осадка.  [c.432]

Как видно на рис. 3, при приближении анодного эффекта /Стр растет. Известно, что критическая плотность тока достигается не на всех анодах одновременно. Частичная пассивация отдельных анодов вызывает перераспределение тока по другим аноДам электролизера. Вследствие этого неравномерность распределения тока по анодам увеличивается.  [c.39]

Метод химической пассивации позволяет получать для металлов, склонных переходить в пассивное состояние, такие же поляризационные диаграммы, которые получаются при внешней анодной поляризации. Эти диаграммы имеют участки, характерные для активного растворения, активно-пассивного состояния и пассивного состояния. На рис. 2,18 представлены кривые зависимости скорости коррозии стали от потенциала, который задавался электроду с помощью различных концентраций едкого натра, силиката, фосфата и пербората натрия. Как видно, закономерность получается такая же, как и при внешней анодной поляризации. В начале диаграммы имеется активная область растворения, в которой смещение потенциала в положительную сторону приводит к увеличению скорости растворения. После достижения определенного потенциала, который назовем потенциалом частичной пассивации, скорость растворения начинает падать. Полная пассивация наступает в присутствии этих ингибиторов практически при одинаковых значениях потенциала (- -0,2-f-+0,25 В).  [c.55]


Итак, мы рассмотрели два класса ингибиторов, отличающихся прямо противоположными свойствами одни относятся к сильным окислителям, действующим преимущественно как стимуляторы катодного процесса и косвенно замедляющим анодный, другие, не обладая окислительными свойствами, оказывают благодаря частичной пассивации электрода косвенное влияние на катодную реакцию, увеличивая ее скорость, и непосредственно влияют на анодную реакцию, замедляя ее.  [c.59]

При потенциалах более положительных потенциала частичной пассивации механизм процесса меняется, его скорость перестает зависеть от скорости катодной реакции и определяется уже скоростью анодной реакции. Поскольку при потенциалах, характерных для активно-пассивного состояния электрода, соотношение между пассивной и активной частями поверхности не меняется и, следовательно, об увеличении эффективности катодного процесса говорить не приходится, уменьшение скорости растворения при дальнейшем смещении потенциала в положительную сторону можно объяснить лишь тем, что ингибитор начинает оказывать непосредственное влияние на анодную реакцию, замедляя ее. Как видно, имеется принципиальное различие в механизме действия изученных ингибиторов в случаях, когда электрод находится в активном и активно-пассивном состояниях в первом случае инги-бито ры увеличивают эффективность катодного процесса, не вмешиваясь в анодный, во втором — уменьшают скорость анодного процесса, не вмешиваясь в катодный.  [c.62]

Частичная пассивация электрода приводит также к существенному изменению скорости электрохимических реакций при соблюдении равенства анодных и катодных токов.  [c.83]

Если к тому же ингибитор обладает окислительными свойствами и способен при потенциале коррозии восстанавливаться на электроде с заметной скоростью, не переводя металл в пассивное состояние, то это может привести к увеличению скорости и сопряженной анодной реакции, а следовательно, и коррозии. Частичная пассивация поверхности приводит к появлению в системе активно-пассивных элементов со значительной разностью потенциалов (0,4- 0,6 В), которые усиливают коррозию на активной части электрода.  [c.84]

Последний вывод является, на первый взгляд, несколько неожиданным, поскольку в обычных условиях считают, что когда катодная реакция протекает с незначительной поляризацией электрода, это благоприятствует коррозии. Однако при частичной пассивации электрода картина меняется и высокая катодная поляризуемость в исходном электролите способствует увеличению интенсивности коррозии. Объясняется это тем, что при малой поляризуемости анодной реакции незначительное смещение потенциала в положительную сторону ингибитором приводит к большему приращению анодного то ка.  [c.94]

Некоторые ингибиторы, например фосфаты, могут осаждать на поверхности металла пленки, отличающиеся исключительно высоким сопротивлением для переноса электронов. Это весьма благоприятный фактор, так как способствует ослаблению вредного влияния, оказываемого анодными ингибиторами при частичной пассивации электрода.  [c.94]

Действие катодных ингибиторов в противоположность анодным, которые могут частично запассивировать электрод, оставляя некоторую его часть в активном состоянии, не связано с частичной пассивацией. Катодные ингибиторы уменьшают коррозию вследствие торможения отдельных стадий катодной реакции ионизации кислорода, диффузии кислорода к катоду и разряда ионов водорода, что, естественно, не может привести к локальной коррозии.  [c.95]

Зачастую одновременное торможение ингибиторами обоих электродных процессов может полностью исключить вредное влияние чисто анодных ингибиторов, приводящих при частичной пассивации металла к увеличению интенсивности коррозии. Для этого требуется, чтобы уменьшение коррозионного тока вследствие торможения катодной реакции равнялось произведению разности плотности тока после введения ингибитора t2 и до его введения й на площадь той части электрода, которая осталась в активном состоянии в присутствии замедлителя (i2—ti)fa2 =/.  [c.96]


Разумеется, что безопасными должны быть такие анодные ингибиторы, которые тормозят анодную реакцию, не изменяя при этом соотношения между активной и пассивной частями электрода. Самыми опасными при концентрациях, не обеспечивающих полную защиту, являются ингибиторы, вызывающие усиленную анодную поляризацию вследствие частичной пассивации металла и в то же время являющиеся хорощими деполяризаторами катодного процесса.  [c.97]

При этом надо различать три случая 1) ингибитор изменяет лишь окислительно-восстановительный потенциал системы, не изменяя анодной реакции 2) изменяется окислительно-восстановительный потенциал системы и уменьшается скорость катодной реакции 3) изменяется окислительно-восстановительный потенциал системы и возможна частичная пассивация электрода.  [c.98]

По другому, электрохимическому, варианту предполагается, что механизм адсорбционной пассивации заключается в том, что адсорбируемые на поверхности металла кислородные атомы образуют электрические диполи за счет частичной ионизации кислородных атомов электронами металла положительный конец диполя располагается в металле, а отрицательный — в двойном слое раствора. Образование сложного адсорбционно-ионного скачка потенциала (фиг. 30) вызывает сдвиг общего электродного потенциала в положительную сторону и ионизация металла уменьшается. Количество кислорода и при этом варианте пассивации меньше, чем требуется по расчету для создания мономолекул яр кого слоя. Характерным примером зависимости пассивности от количества кислорода, адсорбированного поверхностью металла по вышеупомянутому механизму, является анодная пассивация железа в щелочных растворах.  [c.62]

Теория пассивности уже частично рассматривалась выше, и следует вновь обратиться к этому материалу (см. разд. 5.2). Контактирующий с металлической поверхностью пассиватор действует как деполяризатор, вызывая возникновение на имеющихся анодных участках поверхности высоких плотностей тока, превышающих значение критической плотности тока пассивации /крит-Пассиваторами могут служить только такие ионы, которые являются окислителями с термодинамической точки зрения (положительный окислительно-восстановительный потенциал) и одновременно легко восстанавливаются (катодный ток быстро возрастает с уменьшением потенциала — см. рис. 16.1). Поэтому трудновос-станавливаемые ионы SO или СЮ не являются пассиваторами для железа. Ионы NOj также не являются пассиваторами (в отличие от ионов NO2), потому что нитраты восстанавливаются с большим трудом, чем нитриты, и их восстановление идет столь медленно, что значения плотности тока не успевают превысить /крит-С этой точки зрения количество пассиватора, химически восстановленного при первоначальном контакте с металлом, должно быть по крайней мере эквивалентно количеству вещества в пассивирующей пленке, возникшей в результате такого восстановления. Как отмечалось выше, для формирования пассивирующей пленки на железе требуется количество электричества порядка 0,01 Кл/см (в расчете на видимую поверхность). Показано, что общее количество химически восстановленного хромата примерно эквивалентно этой величине, и, вероятно, это же справедливо и для других пассиваторов железа. Количество хромата, восстановленного в процессе пассивации, определялось по измерениям [4—6] остаточной радиоактивности на промытой поверхности железа после контакта с хроматным раствором, содержащим Сг. Принимая, в соответствии с результатами измерений [7], что весь восстановленный хромат (или бихромат) остается на поверхности металла в виде адсорбированного Сг + или гидратированного  [c.261]

Формирование чужеродных (локальных) катодов практикуется в первую очередь в случае материалов с высоким перенапряжением водорода для уменьшения коррозии с водородной деполяризацией (кислотной коррозии). На рис. 20.11 показана кривая анодный частичный ток — потенциал (а) для пассивируемого металла в среде с током пассивации /р и соответствующая кривая катодный частичный ток — потенциал (б) для водорода. Ввиду высокого перенапряжения водорода ток пассивации не достигается. При свободной коррозии устанавливается стационарный потенциал и а в активном состоянии. Если этот материал привести в контакт с металлом, имеющим меньшее перенапряжение водорода в соответствии с кривой катодный частичный ток — потенциал (см. рис. 20.11, в), то такой катодный частичный ток будет достаточен для пассивации. При свободной коррозии теперь установится стационарный потенциал Ujip в пассивном состоянии. Аналогичным образом действуют и локальные катоды, полученные в материале путем легирования. По такому же электрохимическому принципу можно уменьшить и перенапряжение для восстановления других окислителей в среде, причем тогда согласно рис. 2.14 нестабильно пассивные материалы могут стать стабильно пассивными.  [c.391]

Большое значение в определении роли среды и различных ее компонентов на процессы, протекающие при МКК, имеют потенциостатические методы исследований. Так, сравнение анодных потенциостатических кривых аустенитных коррозионно-стойких сталей, склонных и не склонных к МКК, показывает, что на материалах, восприимчивых к разрушению по границам зерен, ток анодного растворения в активном состоянии, области частичной пассивации и устойчивого пассивного состояния всегда Бгдше, чем для таких же материалов в аустенизированном состоянии 150]. С помощью потенциостатических исследований можно установить область потенциалов, при которых в дайной среде происходит наиболее сильная МКК, какие условия и добавки в среду вызывают смещение стационарного потенциала матери-  [c.59]


Интересные результаты в этом отношении были получены также Снейвли и Хаккерманом [24]. По их данным для пассивации железа в подкисленном растворе сульфата требуется -3 мКл/см электричества в расчете на видимую поверхность. Далее авторы катодной поляризацией восстанавливали пассивный слой и наблюдали за анодным поведением электрода оказалось, что можно восстановить - 70% окисного слоя, а электрод останется в пассивном состоянии. Такой частично восстановленный электрод анодпо не растворяется. Отсюда было сделано заключение, что для пассивирования железа в сульфатном растворе достаточно 1 мКл/см электричества, что соответствует моноатомному слою кислорода. Такая пассивность в отличие от фазовой называется адсорбционной.  [c.23]

Зависимость скорости коррозии от потенциала при внутренней поляризации нитробензоатом амина такая же, как и при внешней анодной поляризации вначале при смещении потенциала в положительную сторону скорость растворения увеличивается. После достижения определенного потенциала, который мы назвали потенциалом частичной пассивации фч. п, скорость коррозии начинает резко падать и при достижении другого потенциала фп.п электрод переходит в пассивное состояние. Как видно, получается типичная для металла, склонного переходить в пассивное состояние, кривая с тремя участками активного растворения, активно-пассивного состояния и пассивного состояния.  [c.44]

Механизм этого явления можно объяснить тем, что благодаря пассивации значительной части поверхности увеличивается катодный ток восстановления кислорода и благодаря внутренней анодной, поляризации ускоряется анодная реакция на активной части электрода. Можно считать, что при потенциале частичной пасси-  [c.57]

Здесь уместно заметить, что со смещением потенциала в положительную сторону должна уменьшаться скорость катодной реакции, а поскольку эти реакции сопряжены, то это должно уменьшать коррозию. Однако если учесть, что большинство коррозионных процессов с кислородной деполя1ризацией протекают с катодным ограничением, т. е. с большой поляризуемостью катодной реакции, то при одном и том же сдвиге потенциала в положительную сторону скорость катодной реакции изменится в меньшей степени, нежели скорость анодной реакции. В результате этого частичная пассивация электрода, вне зависимости от того, наблюдается ли локализация электрохимических реакций по поверхности или нет, должна приводить к увеличению скорости растворения металла.  [c.58]

НО катодным ингибиторам можно отнести к безоласным ингибиторам. Это его свойство обусловлено тем, что он уменьшает скорость анодной реакции, не пассивируя частично электрод, а оставляя его до потенциала полной пассивации в активном или активно-пассивном состояниях. В -0,1 связи с этим интенсивность коррозии не возрастает, а скорость непрерывно падает.  [c.65]

Однако анодные ингибиторы при неблагоприятных условиях, когда концентрация их в электролите понижается настолько, что ее уже недостаточно для того, чтобы запассивировать всю поверхность, могут, как было показано выше, усилить скорость коррозии в тех местах, где коррозионный процесс не приостановлен. Объясняется это эффектом внутренней анодной поляризации, возникающей за счет неполной пассивации электрода. Когда электрод не полностью запассивирован, происходит дифференциация электрохимических реакций, обусловливающих коррозионный процесс, по поверхности и небольшая активная часть поверхности подполя-ризовывается анодно за счет увеличения эффективности катодного процесса на запассивированной части электрода. В этом отношении анодные ингибиторы, если их неразумно применять, из-за частичной пассивации электрода и локализации анодного процесса представляют определенную опасность.  [c.83]

Возможность частичной пассивации металлов анодными ингибиторами не исключает, однако, их успешного применения. Для того чтобы избежать локального развития процесса, необходимо лишь следить за тем, чтобы концентрация ингибитора не снизилась ниже защитной. Контроль осуществляется обычно периодическим анализом электролита на (Содержание иншбитора. Кроме того, поскольку независимо от природы ингибитора и его защитной концентрации полная пассивация стали достигается при одном и том же значении потенциала (для 0,1 н. Na2S04 фп.п=0,20- —hO.25 В), полноту защиты можно контролировать по значению потенциала, который необходимо предварительно установить для каждого электролита.  [c.98]

Таким образом, ингибиторы по их влиянию на щелевую коррозию можно разделить на две группы одна из них при концентрациях, достаточных для защиты открытой поверхности от коррозии, приводит к интенсивной жоррозии металла в щели другая — уменьщает коррозию металла в щелях при любых концентрациях, так же как и на открытой поверхности. К первой группе относятся нитрит натрия, бихромат калия, двузамещенный фосфат и любые другие ингибиторы, которые защищают металл -благодаря частичной пассивации электрода. Ко второй группе относятся сульфат цинка, нитрат кальция и другие ингибиторы, защищающие металлы от коррозии благодаря замедлению скорости катодной реакции. К этой группе ингибиторов можно, очевидно, отнести и такие анодные ингибиторы, механизм действия которых не связан с частичной пассивацией электрода, а обусловлен лишь уменьшением скорости анодной реакции, например, метаванадат натрия.  [c.105]

Такая закономерность в электрохимическом ловедении стали объясняется тем, что смещение ингибитором потенциала стали от стационарного до потенциала частичной пассивации обусловлено в основном ускорением катодной реакции, в то время как смещение потенциала металла от потенциала частичной пассивации до потенциала полной пассивации обусловлено уже в значительной степени торможением анодной реакции. В области потенциалов, характерных для активного растворения, ускорение катодной реакции не столь велико, чтобы сместить потенциал металла до потенциала полной пассивации (основным катодным деполяризатором здесь является кислород и токи восстановления малы), и поэтому металл остается в активном состоянии.  [c.174]

По мере смещения потенциала металла за -потенциал частичной пассивации начинают все более и более проявляться пассивирующие свойства нитрит-ионов по отношению к анодной реакции, что облегчает переход металла в пассивное состояние. В пользу этого механизма указывает то обстоятельство, что степень заполнения ингибитором поверхности и, следовательно, исключение ее из сферы анодной (реакции растет лишь до потенциала частичной пассивации. В области нотенциалов, характерной для активнопассивного состояния, степень заполнения поверхности ингибирующим ионом не меняется, и, значит, эффективность катодного процесса остается постоянной. Падение скорости анодного процесса по мере смещения потенциала в положительную сторону является лишь следствием проявления пассивирующих свойств анионов по отношению к анодной реакции.  [c.174]

Образующиеся продукты реакции после достижения предельной концентрации насыщения могут выделяться на поверхности металла в виде достаточно толстых, часто видимых, но обычно неплотных и лишь только частично защитных кроющих слоев. В этом случае на анодной поляризационной кривой участок E ABDP (см. рис. 11) вырождается в участок E A B D P. Наблюдаемая более сильная анодная поляризуемость на участке A B D в этом случае происходит вследствие экранирования части поверхности продуктами коррозии. Процесс роста пористой пленки продолжается до тех пор, пока, благодаря все усиливающейся истинной плотности тока в точке D будет достигнут потенциал Еа начала образования хемосорбционной оксидной пленки, вследствие непосредственного анодного процесса по реакции (12). Предварительное возникновение толстого, пористого слоя продуктов коррозии облегчит наступление анодной пассивности благодаря сильному уменьшению истинной поверхности (сокращая общую плотность предельного тока пассивации от точки D к точке D ). В ряде случаев после пассивации и прекращения процесса коррозии пористая видимая пленка продуктов коррозии может снова раствориться вследствие снижения пересыщения в при-электродном слое.  [c.58]


Преимущественное растворение атомов более активного компонента и обогащение поверхности твердого раствора атомами более устойчивого компонента, однако, не всегда будут приводить к возникновению коррозионнозащитной структуры. В том случае, если накапливающийся компонент не перекри-сталлизовывается на поверхности в сплошной слой защитного компонента, то он может накапливаться на поверхности в виде рыхлой или губчатой массы или порощкообразиого слоя значительной толщины. В этом случае скорость коррозии (если нет явлений пассивации) может заметно не снижаться. Частичное экранирование анодной поверхности может несколько снижать скорость коррозии, а повыщение активности катодного процесса может даже во времени ускорять коррозионный процесс. Обесцинкование 3-латуни может иллюстрировать подобный случай коррозии. Наоборот, при накоплении и кристаллизации атомов устойчивого компонента в виде компактного сплошного слоя защитная структура поверхностного слоя может возникать уже при относительно малой его толщине  [c.29]

Нельзя также исключить, что некоторое ослабление водородом границ зерен феррита, особенно у вершины трещины, способствует протеканию анодного механизма щелочного растрескивания. Это растрескивание обусловлено частичной пассивацией поверхности и разрушением защитных пленок по границам зерен. Межкристаллитный характер разрушения вызван электрохимической коррозией, интенсифицированной приложенными напряжениями [47, 218]. Особенно интенсивно щелочное растрескивание при высоком уровне растягивающих напряжений, близком к пределу текучести. Механизм разрушения связывают с хемосорбцией ионов ОН на дефектных местах поверхности, образующих межзеренную границу, и снижением поверхностной энергии у вершины трещины. Растрескивание сталей в щелочном растворе наблюдается в определенном диапазоне потенциалов (ф = -900... -500 мВ), соответствующем активно-пассивному переходу стали, и области существования растворимого гипоферрита НГеОз, оксидных пленок Fe(0H)2 и FegO . При значениях потенциала Ф -550 мВ обеспечивается стабильная пассивация железа.  [c.347]

При концентрациях добавок выше 0,2 г/л величина критического тока растворения минимальна для гексадецилтрипропиламмония бромистого. В данном случае максимальный тормозящий эффект наблюдается для бромистой соли. Интересно отметить, что с увеличением концентрации добавок потенциал пассивации смещается в положительную область. Этот факт свидетельствует о том, что ингибиторы снижают анодную пассивируемость стали пассивность наступает при более положительном потенциале, чем в отсутствие добавки. С повышением концентрации добавок выше критического предела, где тормозящий эффект снижается, а стационарный потенциал смещается обратно в отрицательную область, потенциал пассивации не меняется. Вероятно, смещение потенциала пассивации происходит из-за экранирования поверхности адсорбировавшимися анионами и ограничения таким образом доступа растворенного кислорода к поверхности металла. Естественно предположить в данном случае, что пассивность в присутствии добавок наступает после частичной десорбции анионов, вызванной анодной поляризацией. На величину тока растворения в области оптимальной запассивированности ингибиторы существенного влияния не оказывают. Лишь значительные концен-  [c.46]

Точность электрохимического фрезерования также зависит во многом от состава электролита. Для наилучшего выравнивания поверхности прл электрохимической обработке и, тем самым, нолучет1Я поверхностей высокой чистоты (класс 8—9) необходимо использовать электролиты для никелевых сплавов, где анодному растворению в транепаееивной области т1редшествует частичная пассивация,  [c.61]

При электрорастворении металлов необходимо учитывать значительную роль пассивации анодов [67]. Как правило, для большинства металлов анодный процесс в чистом виде не наблюдается, а всегда сопровождается частичной или полной пассивацией. В прианодном слое происходит образование твердых малорастворимых продуктов реакции с катионом, выходящим из решетки металла электрода (солевая пассивация). Более того, с ионами металла, входящими в состав решетки, может соединяться кислород, причем формируется плотная окисная пленка с электронной проводимостью (полная пассивация) или толстые микропористые (0,01 мк) слои в виде фосфатных или других соединений металла.  [c.540]


Смотреть страницы где упоминается термин Анодная пассивация частичная : [c.140]    [c.68]    [c.400]    [c.61]    [c.64]    [c.94]    [c.99]    [c.67]    [c.267]    [c.293]    [c.294]    [c.14]    [c.53]    [c.41]    [c.165]   
Ингибиторы коррозии (1977) -- [ c.83 ]



ПОИСК



Анодная пассивация

Анодный

Пассивация

Частичная



© 2025 Mash-xxl.info Реклама на сайте