Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Азотирование стали жидкое

Азотирование стали жидкое  [c.716]

При температуре, равной или большей 500° С, происходит азотирование сталей и сплавов на железной основе в жидком натрии, содержащем растворенный азот [99].  [c.302]

Контактная усталостная- прочность у азотированных конструкционных сталей ниже, чем у цементованных, но выше, ч м у стали, прошедшей поверхностную закалку при индукционном нагреве (рис. 57). При повышенных контактных напряжениях толщина азотированного слоя должна быть не менее 0,45—0,5 мм. Кратковременное газовое азотирование и жидкое азотирование по контактной прочности значительно уступает цементации. Азотирование следует использовать для изделий, испытывающих высокие циклические нагрузки при умеренных контактных напряжениях и работающих в условиях трения скольжения (или абразивного износа). Азотирование повышает сопротивление стали кавитационной эрозии [32].  [c.343]


После твердого и газового цементирования железа углеродом следовало бы остановиться на жидком цементировании, производимом в расплавленных (жидких) солях. Однако эти соли обычно берутся цианистые, содержащие С и N, и производят не только науглероживание, но и насыщение азотом, т. е. азотирование стали. Поэтому последний процесс рассмотрим сперва в чистом виде.  [c.269]

Азотирование при воздействии ультразвука. Исследования влияния ультразвуковых колебаний на процесс азотирования стали в газовой и жидкой средах показали, что при воздействии ультразвука увеличивается поверхностная твердость азотированного слоя, а длительность процесса сокращается приблизительно в 1,5 раза. Большие твердость и глубина слоя достигаются при газовом азотировании при колебаниях образца.  [c.143]

Л. Защита участков, не подлежащих азотированию, нанесением тонкого слоя (И)— Г) мкм) олова электролитическим методом или жидкого стекла. Олово при температуре азотирования расплавляется на поверхности стали в виде тонкой не проницаемой для азота пленки.  [c.242]

Аммиак NH3 — бесцветный газ с характерным резким запахом. Очень хорошо растворяется в воде (около 700 объемов при 20° С). Обычно хранится в жидком состоянии в баллонах под давлением 6—7 am. Выпускается в виде концентрированного водного раствора (около гб /о NHj по весу) и нашатырного спирта (около 10 /о NHg по весу). Аммиак применяется для получения азотной кислоты, при азотировании (нитрировании) легированных сталей, для газового цианирования, а также в холодильных установках.  [c.379]

Процессы химико-термической обработки (ХТО) заключаются в сочетании термического и химического воздействия в целях изменения состава, структуры и свойств поверхностного слоя стали. При ХТО происходит насыщение поверхности стали различными химическими элементами за счет диффузии, проникновения в кристаллическую решетку железа атомов этих элементов. Этот процесс происходит при нагреве стальных деталей в газовой, жидкой или твердой среде, богатой этими элементами. Наиболее распространены следующие виды ХТО цементация, азотирование, цианирование, диффузионная металлизация и т. д.  [c.142]

Более универсальными и пригодными для всех инструментальных сталей являются низкотемпературное жидкое или газовое азотирование (желательно с последуюш,им оксидированием). Влияние их на свойства и стойкость инструмента примерно одинаково. На поверхности инструмента в результате выполнения этих обработок создается слой высокой твердости, возникают полезные сжимаюш,ие напряжения, повышается предел выносливости и уменьшается склонность к налипанию при обработке резанием и давлением.  [c.387]


Жидким азотированием называется химико-термическая обработка, заключающаяся в диффузионном насыщении стали одновременно азотом и углеродом при температуре в интервале, как правило, 560— 580° С в расплаве, содержащем цианистые соли (табл. 178).  [c.352]

Различают прочностное азотирование — для повышения твердости и износостойкости поверхностного слоя деталей, изготовленных из легированных сталей, и антикоррозионное азотирование — для защиты деталей из легированных и углеродистых конструкционных сталей от коррозии. Применяют газовое и жидкое азотирование.  [c.183]

Достоинствами процесса является повышенная сопротивляемость коррозии, М лые деформации обрабатываемых изделий и возможность использования его Йя упрочнения изделий из различных сталей. Газовое азотирование с добавкой Глеродсодержащих газов дешевле азотирования в жидких ваинах и нетоксично. Этот процесс рекомендуется для упрочнения кулачковых и коленчатых валов, штоков цилиндров, тормозных барабанов, зубчатых колес, деталей точной механики, гидравлических машии, ткацких станков, инструмента и т. д.  [c.337]

Азотированный слой обладает высокой износостойкостью. Износостойкость азотированной стали в 1,5—4 раза выше износостойкости закаленных высокоуглеродистых и цементованных сталей. При этом следует иметь в виду, что увеличение твердости не всегда влечет за собой повышение износостойкости (рис. 53). Послойное исследование износостойкости азотированного слоя сталей 38Х2МЮА и 40Х показало, что наибольшая износостойкость не совпадает с максимальной твердостью и находится на большей глубине. С повышением температуры насыщения и длительности это несоответствие возрастает. Износостойкость сталей 38Х2МЮА и 40Х, азотированных при 620° С, выше, чем после азотирования при 520—560 С, несмотря на меньшую твердость. Азотированный слой на углеродистых сталях имеет низкую твердость, но повышенную износостойкость. Износостойкость после кратковременного газового и жидкого азотирования практически одинакова.  [c.341]

Азотирование в жидких средах (тенифер-процесс) Процесс проводится при температуре 570 " С в течение 0,5—3,0 ч в расплавленных цианистых солях (40 о K NO + 60% Na N), через которые пропускается сухой воздух. Вследствие низкой температуры в сталь диффундирует в основном азот, образующийся из цианистых солей. В результате обработки на поверхности возникает тонкий (7—15 мкм) карбонитридный слой Feg (N, С) (рис. 164), обладающий высоким сопротивлением износу и не склонный к хрупкому разрушению. За карбонитридным слоем по сечению располагается слой твердого раствора азота в сс-железе. Общая глубина слоя 0,15— 0,5 мм. Как и после газового азотирования, твердость слоя на углеродистых сталях составляет HV 300—350, а на легированных HV 600—1100. Жидкое азотирование значительно повышает предел выносливости сталей. Достоинством процесса является незначительное изменение размеров и отсутствие коробления деталей, недостатком — токсичность и высокая стоимость цианистых солей. Этот процесс за рубежом широко применяется для обработки деталей автомобиля (коленчатые валы, шестерни и т. д.), штампов, пресс-форм и т. д.  [c.258]

Азотирование в жидких средах (тенифер — процессу. ПрЬ-цесс проводят при 570°С в течение 0,5—3,0 ч в расплавленных цианистых солях (85% соли, содержащей 40% КСЫО и 60% ЫаСМ + 15% КагСОз), через которые пропускают сухой воздух. Соли расплавляются в тигле из титана. Вследствие низкой температуры в сталь диффундирует в основном азот, образующийся при разложении цианистых солей. В результате обработки на поверхности стали возникает тонкий (7—15 мкм) кар-бонитридный слой Рез (Ы, С), обладающий высоким сопротивлением износу и не склонный к хрупкому разрушению. Ниже карбонитридного слоя располагается слой, состоящий из твердого раствора азота в а-железе и избыточных кристаллов у -фазы. Общая глубина слоя 0,15—0,5 мм. Как и после газового азотирования, твердость слоя на углеродистых сталях состав-  [c.271]


В. Т. Яркина [161 изучали влияние ультразвука на азотирование стали марки 38ХЮА в газовой и жидкой среде. Полученные ими данные показывают, что ультразвук положительно влияет на азотирование стали марки 38ХЮА, увеличивая твердость и глубину азотированного слоя. Микротвердость озвученных образцов более высокая, чем неозвученных. С применением ультразвука процесс  [c.223]

Процесс коррозии многокомпонентных конструкционных материалов в жидкометаллических теплоносителях является сложным и состоит из нескольких параллельно идущих многостадийных гетерогенных процессов. При повышенном содержании кислорода в жидком щелочном металле в сталях на некоторой глубине происходит образование сложных оксидов типа MeO-NajO и Me0-(Na20)2—так называемое внутреннее окисление. Кроме того, как в циркулирующей, так и в неподвижной жидкометаллической системе происходит селективное растворение и перенос компонентов, перераспределение углерода и азота между различными конструкционными материалами или участками конструкции, находящимися при разных температурах, проникновение жидкого металла в твердый. Эти процессы вызывают не только коррозионные потери массы, но и физико-химические и структурные изменения материалов охрупчивание, азотирование, эрозионное разрушение, изменение состава поверхностного слоя. Скорость переноса массы и селективного растворения компонентов сталей  [c.259]

Основными процессами поверхностного упрочнения деталей машин на машиностроительных заводах являются процессы химико-термической обработки, основой которых является изменение химического состава в поверхностных слоях путем диффузионного насыщения различными элементами при высоких температурах. В довоенный период на машиностроительных заводах превалирующими процессами химико-термической обработки были цементация твердым карбюризатором, жидкостное цианирование и азотирование. Цементации твердым карбюризатором подвергались детали машин и инструменты в печах периодического действия (камерных) и в печах непрерывного действия (толкательных с мазутным обогревом) на автомобильных, тракторных и самолетостроительных заводах применялся преимущественно древесноугольный твердый карбюризатор (ГОСТ 2407-51). Жидкое цианирование было наиболее распространено на Горьковском автозаводе, где в качестве цианизатора использовались соли с цианидом натрия или калия [81] на других заводах применялись соли с цианидом кальция. Азотированию подвергались преимущественно детали авиационных двигателей коленчатые валы из стали 18ХНВА, гильзы цилиндров из стали 38ХМЮА и др.  [c.149]

Скорость коррозии всех марок стали, особенно низколегированных, резко уменьшается при введении в жидкий металл ингибиторов циркония (наиболее эффективный ингибитор), титана, магния и кальция в количестве до 0,05%. Эффективность действия ингибиторов оказывается большей при азотировании поверхности стали. Сплавы на основе никеля непригодны для работы в среде висмута. Эрозионное воздействие висмута сказывается при скоростях 3—4 м1сек и более.  [c.297]

Выбор способа химико-термической обработки обусловлен не только требованиями, предъявляемыми к поверхностному слою, но и температурой, прн которой выполняется эта обработка, и теплостойкостью стали. Наиболее универсальными и эффективными методами упрочнения поверхностного слоя инструментов из быстрорежущих сталей является жидкое цианирование, карбонитрация, ионное азотирование и вакуумно-плазменное нанесение износостойких покрытий. Основные способы химико-термической обработки, применяемые в качестве заключительной операции для повышения стойкости инструментов из быстрорежущих сталей, приведены в табл. 18.  [c.613]

В последние годы на ЧЭМК совместно с НИИМ и УралНИИЧМ освоено производство азотированного феррохрома путем барботажа жидкого сплава азотом в ковшах с пористым днищем. Масса барботируемого сплава достигает 10 т, а содержание азота в нем—3 %. Дополнительные затраты на азотирование 1 т сплава не превышают 20 руб, а при замене им спеченного азотированного феррохрома экономия достигает 500 руб/т за счет дешевизны сплава и более высокого усвоения азота сталью.  [c.241]

Для получения высокого сопротивления износу в машиностроении применяют химико-термическую обработку поверхностей низкоуглеродистых сталей цементацию, заключающуюся в диффузионном насыщении металлов углеродом в твердой, газовой и жидкой средах азотирование — диффузионное насыщение металла азотом цементацию — диффузионное насышение углеродом и азотом одновременно, после которой проводят закалку и низкий отпуск. Диффузионное насыщение при химико-термической обработке осуществляется на глубину менее 1 мм.  [c.358]

Перед азотированием для получения высокой прочности и вязкости сердцевины проводится предварительная термическая обработка деталей, которая состоит из закалки и высокого отпуска. После такой обработки сталь имеет структуру сорбита. Далее следует механическая обработка деталей. Если на поверх1юсти деталей имеются участки, не подлежащие азотированию, на них наносится тонкий защитный слой олова или жидкого стекла. После азотирования производится окончательное шлифование деталей.  [c.146]

Прочно занял свое место процесс жидкостного азотирования в расплавленных цианистых солях (40 % K NO и 60 % Na N), через которые при 570 °С в течение 1-3 ч пропускают кислород. Толщина азотированного слоя 0,15-0,5 мм. В результате распада солей в сталь диффундирует азот, на поверхности деталей образуется тонкий слой карбонитрида Feg( N) с высоким сопротивлением изнашиванию и коррозии. Азотированный слой не склонен к хрупкому разрушению. Твердость азотированного слоя углеродистых сталей до 350 HV, легированных — до 1100 HV. Недостатки процесса — токсичность и высокая стоимость цианистых солей. Жидкостное азотирование рекомендуется для зубчатых колес, штампов, пресс-форм и других деталей. Защита участков поверхности от насыщения азотом производится нанесением олова (гальваническим методом или методом окунания толщина слоя 10 мкм), обмазкой жидким стеклом с наполнителем (мел, тальк, асбест, окись хрома и др.), химическим никелированием и заделкой отверстий металлическими пробками.  [c.225]


Формообразующие детали. Эти детали являются наиболее ответственными, так как они соприкасаются с жидким сплавом, в той или иной степени участвуют в оформлении поверхностей отливок и наиболее еильно подвергаются термическому воздействию и механическим нагрузкам. Эти детали изготовляют из жаростойких сталей, обладающих высокими механическими свойствами. Для повышения износостойкости и уменьшения химического взаимодействия с заливаемым сплавом формообразующие детали подвергают термообработке, а их рабочие поверхности — цианированию, азотированию, фосфатированию и другим методам упрочнения. Марка стали и режим термообработки зависят от температуры плавления заливаемого сплава. В целях уменьшения сопротивления выталкиванию отливок из пресс-формы и. првышения качества поверхности отливок рекомендуется обраба-тывать рабочие поверхности формообразующих деталей до ше-( роховатости 0,32 мкм.  [c.125]

Для увеличения поверхностной твердости одновременно с сохранением вязкой сердцевины применяют азотирование на глубину до 0,5 мм. Для этих же целей используют низкотемпературное цианирование, заключающееся в одновременном насыщении поверхностного слоя глубиной 0,15—0,20 мм азотом и углеродом. Процесс осуществляется в жидком цианизаторе или газовой среде в интервале температур 540—560 °С. Цианирование придает стали высокие твердость и сопротивление усталости, устойчивость против отпуска при высоких температурах, высокую износостой-  [c.138]

Нередко бывает необходимым отдельные части изделия предохранить от азотирования. Для Этого чаще всего гальванически покрывают оловом места, не подлежащие азотированию. Толщина оловянного покрытия должна быть 10—15 мкм. Для местной защиты от азотирования высокохромистых ферритных и аустениг-ных сталей применяют химическое (толщина 8—10 мкм) или гальваническое (толщина до 30 мкм) никелирование. На многих заводах применяют жидкое стекло. Перед покрытием детали обезжиривают, промывают горячей водой, а затем окунают в жидкое Стекло и просушивают при 90—120° С в течение 1,5 ч. Пленка жидкого стекла должна быть прозрачной, без просветов и механических повреждений [66].  [c.328]

Большой практический интерес представляет применение экзотермических ферросплавов (ферромарганец, феррохром, силикохром) с вводом их в ковш. Так, по данным [204], экзотермические смеси феррохрома и ферромарганца с натриевой селитрой (содержание NaNOs в смеси 7—10%) в виде брикетов со связкой на жидком стекле пригодны для легирования стали со сравнительно невысоким содержанием хрома. Содержание азота при этом не повышается, а механические свойства не снижаются. Металлом усваивается 10—30% N. При ранней загрузке брикетов на дно горячего ковша степень усвоения может увеличиться до 60—80%. Этот факт может представить практический интерес при выплавке стали с нитридным упрочнением (например, марок 15Г2АФ, 18ХГ2САФ и т.д.), позволяя снизить расход дорогого и дефицитного азотированного марганца или азотированного феррохрома.  [c.170]

Как указывают авторы данной работы, применение экзотермических ферросплавов позволит значительно расширить сортамент кислородно-конвертерной низколегированной стали. Все ферросплавы в ковш при выпуске плавки должны загружаться через бункер или дозатор равномерно. Загрузку начинают после наполнения металлом не менее Д высоты ковша. Заканчивать их присадку следует по наполнении Vs ковша, но во всяком случае до появления шлака. Ферросилиций задается после ферромарганца или силикомарганца, затем вводится алюминий и ферротитан. Силикохром вводится вместе с ферромарганцем или силикомарганцем. При выплавке ванадийсодержащей стали или стали с нитридным упрочнением, азот в которую вводится в виде азотированного марганца, феррованадий и азотсодержащие сплавы задаются в ковш последними. Не следует забрасывать ферросплавы на дно ковша до выпуска плавки. Раскислители должны забрасываться ближе к струе (под струю), что обеспечивает их полное и своевременное растворение (расплавление) и равномерное распределение в объеме жидкого металла. В случае необходимости при заниженном содержании углерода в металле вследствие задержки выпуска плавки разрешается науглероживать металл в ковше сухим мелким (не более 35 лш) коксиком (или древесным углем) из расчета ввода в металл карбюризатором не более 0,05% С.  [c.171]

Цианирование осуществляется путём нагрева стальных изделий до 500—560 (для инструментов из быстрорежущей стали) или до 750—ЗбО (для деталей машин из конструкционной стали) в науглероживающей и азотирующей среде, выдержки в этой среде при указанной температуре в течение времени, обеспечивающего требуемую глубину науглероженного и азотированного слоев и последующего медленного охлаждения на воздухе (для инструментов) или закалки (для деталей машин). В зависимости от назначения цианирование подразделяется на низкотемпературное ивысокотемпературное, осуществляемое с применением твёрдого, жидкого или газообразного цианизатора.  [c.975]

Жидкое антикоррозионное азотирование осуществляется при 500—640° С пропусканием аммиака через соляную ванну (цианистые соли или хлористый кальций и хлористый натрий) с загруженными в нее деталями из средне- и высокоуглеродистой стали. Для защиты деталей от коррозии через расплавленную соль пропускают постоянный ток плотностью 0,1—0,25 а1дм при этом деталь является анодом, а графит — катодом. После азотирования детали подвергают закалке для получения требуемой твердости поверхностного слоя.  [c.184]

К методам первой группы относятся химико-термические методы образования покрытий (ХТМ), основанные на твердофазовом, жидкостном и газофазовом насыщении поверхностей инструмента. Диффундирующие элементы могут насытить поверхности инструментов непосредственно, без промежуточных реакций либо с предшествующей химической реакцией на границе между инструмен-уальным материалом и покрытием, или же в объеме исходных реагентов. ХТМ включает такие методы, как насыщение поверхности инструментальных сталей азотом и углеродом в газофазовых и жидких средах, ионное азотирование и цементация в плазме тлеющего разряда, борирование, интрооксидирование и др. (см. рис. 2). В результате насыщения диффундирующими элементами инструментального материала образуются диффузионные слои, кристаллохимическое строение и свойства которых сильно отличаются от соответствующих параметров инструментального материала. Эти элементы улучшают его поверхностные свойства. Скорость образования, кинетика роста покрытия, его структура и свойства в значительной степени определяются температурой процесса, временем насыщения, параметрами диффузии насыщающих компонентов в инструментальном материале и, наконец, существенно зависят от химического состава, структуры и свойств последнего.  [c.9]


Смотреть страницы где упоминается термин Азотирование стали жидкое : [c.659]    [c.243]    [c.244]    [c.105]    [c.244]    [c.55]    [c.686]    [c.187]    [c.475]    [c.913]    [c.629]    [c.683]    [c.260]    [c.243]    [c.279]    [c.272]   
Справочник металлиста Том2 Изд3 (1976) -- [ c.0 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.2 , c.352 , c.356 ]



ПОИСК



Азотирование

Азотирование жидкое

Азотирование стали



© 2025 Mash-xxl.info Реклама на сайте