Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость газа критическая в точке

Отношение скорости газа w в данной точке потока к критической скорости w p = а р называется коэффициентом скорости X.  [c.61]

Если же скорость истечения достигнет скорости звука (критической скорости), то скорость движения газа в выходном сечении и скорость распространения давления будут одинаковы. Волна разрежения, которая возникает при дальнейшем снижении давления среды за соплом, не сможет распространиться против течения в сопле, так как относительная скорость ее распространения (а — с) будет равна нулю. Поэтому никакого перераспределения давлений не произойдет и, несмотря на то что давление среды за соплом снизилось, скорость истечения останется прежней, равной скорости звука па выходе из сопла.  [c.48]


Последнее позволяет объяснить, почему в суживающемся канале газ не может расширяться до давления меньше критического, а скорость не может превысить критическую. Действительно, как известно из физики, импульс давления распространяется в материальной среде со скоростью звука, и поэтому, когда скорость истечения будет меньше скорости звука (критической скорости), уменьшение внешнего давления передается по потоку газа внутрь канала и приводит к перераспределению давления в канале. В результате в выходном сечении канала устанавливается давление, равное давлению среды. Если же скорость истечения достигнет скорости звука (критической скорости), то скорость движения газа и скорость распространения давления будут одинаковы и никакое уменьшение внешнего давления не сможет повлиять иа распределение давлений внутри канала. Оно будет постоянным, а следовательно, будет неизменным, и давление в выходном сечении канала независимо от величины внешнего давления.  [c.207]

Условия в горле. Как только выбрана константа а, начальные условия определены. Решение продолжается до горла, где должны удовлетворяться условия, характерные для минимального сечения. Затем можно определить скорость звука в смеси ). После этого по оптимальному расходу определяется критическая скорость газа в горле и. Если константа а выбрана верно, то и в горле, определенная численным методом, совпадает с и , определенной из условия в горле. Если значения м , рассчитанные обоими методами, не согласуются между собой, то в величину константы а вводится поправка и решение повторяется. Поправка определяется по формуле  [c.316]

Уравнение (35) используется в тех случаях, когда известно состояние газа в начале трубы. Если же скорость газа в конце трубы ДОВОДИТСЯ до критической, то удобнее применять уравнение (34).  [c.197]

Режим истечения газа действительно будет дозвуковым, сколь бы велик ИИ был подогрев в камере заданное полное давление газа, снижающееся в процессе подвода тепла, недостаточно для создания звуковой скорости истечения в атмосферу. Если бы полное давление было большим, например р = 2,4-10 Н/м , то из последней формулы следовало бы г(Хз) = 0,390 это значение меньше критического, так как 7-(1) = 0,429. Следовательно, при таком давлении режим истечения был бы критическим и Ха = 1,0.  [c.251]

Если скорость эжектируемого газа в сечении запирания равна скорости звука (критические режимы работы эжектора), то> увеличение площади сечения приводит к тому, что поток эжектируемого газа становится сверхзвуковым, и скорость его продолжает увеличиваться. В результате переноса механической энергии из сверхзвукового эжектирующего потока в сверхзвуковой эжектируемый первый поток тормозится, второй ускоряется, скорости потоков сравниваются по величине и могут остаться сверхзвуковыми в выходном сечении камеры, если не возникнет скачок уплотнения. Таким образом, сверхзвуковой режим течения смеси становится возможным только при критическом режиме работы эжектора.  [c.530]


Поскольку Н1 > 2, то Н1 > и 2 < а. Таким образом, скачок уплотнения может образоваться только в сверхзвуковом потоке газа, причем течение за скачком является дозвуковым. Поэтому можно сказать, что прямой скачок уплотнения является формой перехода от сверхзвукового течения к дозвуковому. При этом переходе температура торможения и критическая скорость газа остаются неизменными. Действительно, для потока перед скачком справедливо равенство  [c.451]

Если скорость потока уменьшить, то турбулентный режим вновь переходит в ламинарный. Скорость, при которой в данных условиях происходит изменение режимов движения, называется критической. Опытным путем было установлено, что величина прямо пропорциональна кинематической вязкости v и обратно пропорциональна диаметру трубы d, т. е. ш, р = kv/d. Безразмерный эмпирический коэффициент k, входящий в формулу, одинаков для всех жидкостей и газов и не зависит от диаметра трубы. Отсюда следует, что изменение режима движения происходит при определенном сочетании параметров d н v. Этот коэффициент называется критическим числом Рейнольдса  [c.286]

Когда сверхзвуковой поток достигает в наименьшем сечении скорости звука (кривая 4), то так же, как и для кривой 2, возможны два случая. Если давление на выходе меньше критического, то Б диффузоре скорость будет расти и на выходе она станет сверхзвуковой (кривая 2). При давлении больше критического скорость в диффузоре убывает и на выходе она достигает дозвуковой (кривая 2 ). Расчет сопла Лаваля в соответствии с теорией одномерного движения идеального газа можно легко произвести, воспользовавшись формулами (VI. 19)—(VI.21) и (VI.32). Разделив параметры заторможенного газа (VI. 19)—(VI.21) на параметры потока в критическом сечении, получим  [c.142]

Если в некоторой точке потока газа скорость его становится равной местной скорости звука в этой же точке, то достигнутая скорость газа называется критической, также критическими называются соответствующие критической скорости значения давления, плотности и температуры критические значения всех этих параметров принято отмечать звездочкой в индексе таким образом, р , р, , будут критическими значениями параметров течения газа.  [c.295]

Следовательно, давление в данном сечении равно критическому и скорость течения газа равна скорости звука. Если в потоке газа устанавливается критическое давление, то все скорости течения в нем одинаковы и движение равномерное.  [c.127]

Если в поток газа поместить твердое тело, то в некоторой точке встречи потока с телом он полностью затормозится, т. е. скорость окажется равной нулю. Такая точка называется критической. Это приведет к изменению параметров набегающего потока Т, р, р до параметров торможения T a. Ро. Ро в критической точке. Для простоты рассмотрим случай, когда в точке торможения нет теплообмена между заторможенным газом и твердым телом, т, е. торможение является адиабатным.  [c.242]

Обозначим через 5 площадь сечения на выходе газовой струи из тела во внешнее пространство. Если скорость истечения газа относительно тела дозвуковая, то на выходе в однородной (по предположению одномерной теории) струе давление будет равно внешнему давлению Ро- Если сопло представляет собой расчетное сопло Лаваля, то давление в сверхзвуковой струе на выходе тоже равно Ро- Поток газа в сопле Лаваля может достигать сверхзвуковых скоростей за критическим сечением и затем внутри сопла Лаваля переходить в дозвуковое движение через систему скачков уплотнения. В этом случае на срезе сопла (в рамках одномерной теории) в истекающей дозвуковой  [c.122]

Графически на диаграмме v p это можно отобразить следующим образом (рис. 8-5). Если начальному состоянию газа соответствует точка /, состоянию среды, в которую истекает газ,— точка 2, а состоянию газа, соответствующему достижению максимального расхода, — точка а, то заштрихованная на рисунке площадь соответствует потенциальной энергии газа, превращающейся в кинетическую энергию истекающей струи расположенная же под ней площадь 2—2 —а —а соответствует той величине потенциальной энергии газа, которая, как было сказано выше, непроизводительно расходуется на образование вихрей при истечении. Параметры, соответствующие максимальному расходу газа, при котором в сопле устанавливается критическое давление, называют критическими. К ним, помимо р р, относят г нр и Икр, причем, как можно показать на основании данных, известных из физики, критическая скорость Шкр равна скорости распространения звука в истекающей среде (в данном сечении).  [c.88]


При анализе работы сопл на нерасчетных режимах также используют уравнения (3.51) и (3.52) и графики, аналогичные рис. 3.3. По мере снижения давления за суживающимся соплом увеличиваются скорость, удельный объем и расход рабочего тела только до тех пор, пока параметры в выходном сечении не станут равными критическим. Дальнейшее уменьшение не приведет к изменению параметров потока в указанном сечении, а следовательно, и к изменению расхода, т. е. левая часть графиков на рис. 3.3 не будет соответствовать действительности. Начиная с критических значений, it, Vit, G в функции Pi будут представлять собой горизонтальные линии (на рисунке не нанесены). Объясняется это тем, что волна разрежения, возникшая в результате понижения давления за соплом и распространяющаяся относительно движущегося газа со скоростью звука, не может пройти вверх по потоку через выходное сечение сопла, в котором скорость газа равна скорости звука. Таким образом, в суживающихся каналах в плоскости выходного сечения, нормальной к оси сопла, невозможно достигнуть сверхзвуковых скоростей. В соплах Лаваля дальнейшее снижение давления за соплом также не приведет к возрастанию расхода, так как расход лимитируется размерами горла и параметрами в нем, которые остаются критическими по той же причине, что и в суживающемся сопле. Заметим далее, что расчетным режимом для сопла Лаваля называется такой, при котором давление в его выходном сечении равно давлению в среде, куда происходит истечение. Если давление на срезе сопла несколько больше давления среды, считается, что  [c.95]

Изменение скорости газа от первой до второй критической, сопровождаемое сильным расширением слоя, увеличит долю пустот, что в свою очередь катастрофически отразится на плотности кипящего слоя, которая упадет практически до нуля или, вернее, до величины, близкой к плотности газа. Другими словами, если, например, в стадии однородного псевдоожижения плотность слоя, состоящего из применяемой в топках кипящего слоя смеси угля и доломита, существенно превышает плотность воды знаменитого Мертвого моря в Палестине, в котором, не нарушая закона Архимеда, нельзя утонуть, то при псевдоожижении, когда доля пустот начнет приближаться к 70 %, даже профессиональному пловцу вряд ли удастся удержаться на поверхности. В таком море судам пришлось бы постоянно менять ватерлинию в зависимости от скорости фильтрации газа.  [c.75]

Подробный алгоритм итерационного метода нахождения критического расхода приведен в следующем параграфе. Что касается скорости звука, которая в двухфазной среде может оказаться на 1—2 порядка ниже, чем в жидкости или паре (газе), то она меняется в широких пределах в зависимости от структуры потока и степени термического и механического равновесия фаз при одних и тех же параметрах торможения, принимает значения от минимального, равного термодинамически равновесной скорости звука, до того максимального, которое устанавливается в выходном сечении канала. Если изменение параметров потока внутри трубы происходит таким образом, что на конечном ее участке непрерывно увеличивающаяся скорость потока оказывается в каждом сечении близкой к непрерывно возрастающей к выходному срезу канала локальной скорости звука, то на указанном конечном участке трубы возможна реализация режима течения, близкого к звуковому.  [c.124]

Если провести на графике дугу окружности, радиус которой равен единице (в размерных осях 2, 2 это соответствует радиусу, равному критической скорости звука а ), то можно определить области потока — дозвуковую и сверхзвуковую, которым соответствуют точки, лежащие на ударной поляре слева и справа от дуги. На рис. 4.3.2 заштрихован участок потока, соответствующий дозвуковой скорости. На ударной поляре видно, что за прямым скачком уплотнения скорость всегда дозвуковая. В то же время за косым (криволинейным) скачком скорость может быть как сверхзвуковой (соответствующие точки на ударной поляре лежат правее точки 5), так и дозвуковой (точки на поляре расположены левее точки S). Причем присоединенному скачку, за которым скорости дозвуковые, соответствуют точки на поляре, лежащие между 5 и С. Экспериментальные исследования показывают, что для углов клипа Рс, меньших критического Ркр или больших, чем SOn, скячс.к остается присоединенным, однако претерпевает искривление, При этом теоретические значения для угла 6с и скорости газа Лг на всем участке за таким криволинейным скачком, найденные на поляре по углу клина Рс. не соответствуют действятельным величинам,  [c.175]

Сравним полутепловое сопло с геометрическим при одинаковом конечном значении полного теплосодернсавия h)j имея в виду, что в полутепловом сопле подогрев газа совершается в цилиндрической трубе 1—2, а в геометрическом сопле то же количество тепла подводится к газу до его входа в сопло. Значения скорости истечения из обоих сопел одинаковы, так как в критических сечениях величина температуры торможения одна и  [c.213]

Обычно детонационная волна возникает как результат местного взрыва в горючей смеси. В области взрыва развиваются весьма высокие давления и от нее устремляется очень сильная ударная волна. При прохождении через холодную горючую смесь эта волна, как указывалось выше, вызывает значительный разогрев газа и может довести его до воспламенения. Именно в этом случае за фронтом ударной волны следует область горения, образующая в совокупности с ударной волной волну детонационную, Так как вблизи центра взрыва скорость распрострашеняя волны и интенсивность ее очень велики, то относительные скорости газа в начале области горения и в конце ее близки между собой и существенно ниже критической скорости  [c.222]

Интересно отметить, что если П = onst, то при Хг < 1 изменение приведенной длины трубы % всегда приводит к изменению скорости на входе в трубу, независимо от того больше или меньше величина х ее критического значения для данного < 1. Сохранение = onst при изменении приведенной длины трубы и 12 < 1 требует соответственно изменения величины располагаемого отношения давлений чем длиннее труба, тем большее значение П необходимо для поддержания заданного режима на входе, т. е. сохранения расхода газа.  [c.262]


Скорость. эжектируемого потока обычно меньше звуковой, поэтому он в выходном участке эжектора ускоряется. В некотором сечении 2—2 (рис. 8.18) граница двух потоков становится параллельной оси сопла это сечение расположено тем дальше от среза внутреннего сопла, чем больше избыток давления в нем. Поперечный размер внутренней струи увеличивается, а эжекти-руемой — уменьшается с ростом избытка давления во внутреннем сопле. Конфигурации двух потоков при разных значениях избытка давления показаны на рис. 8.18. Режим работы эжектора, при котором вторичный поток разгоняется (в сечении 2—2) до звуковой скорости, называется критическим (рис. 8.18, в) если центральная струя расширяется настолько, что заполняет все выходное сечение эжектора (рис. 8.18, г), то наступает режим запирания, когда расход эжектируемого газа равен нулю.  [c.448]

Сверхзвуковой диффузор с полным внутренним сжатием может быть осуществлен без центрального тела (рис. 8.46). В таком диффузоре косой скачок отходит от кромки обечайки А и пересекается в точке О на оси диффузора со скачком, идущим от противоположной кромки. Поток газа в скачке АО отклоняется от первоначального направления и становится параллельным стенке АС. В точке О линии тока вынуждены возвратиться к первоначальному направлению, в связи с чем возникает отраженный скачок 0D. В точке D поток вновь отклоняется от осевого направления и становится параллельным стенке диффузора это вызывает новый скачок, который отражается от оси диффузора, образуя следующий скачок и т. д. Так как в скачках уплотнения поток тормозится, то предельный угол поворота в каждом последующем скачке меньше, чем в предыдущем. Описанный процесс продолжается до тех пор, пока требуемый угол отклонения потока не оказывается больше предельного (ы > > (Omai) с наступлением этого режима вместо очередного плоского скачка образуется криволинейная ударная волна EF, за которой поток становится дозвуковым. Дальнейшее течение в сужающем канале идет с увеличением скорости, причем в узком сечении скорость должна быть ниже или равна критической в последнем случае за узким сечением может возникнуть дополнительная сверхзвуковая зона, завершаемая скачком уплотнения GH.  [c.475]

Точка В характеристики соответствует такому режиму, когда в сечении запирания эжектируемый поток становится звуковым (А,2 = 1). После этого, действительно, дальнейшее снижение противодавления не изменяет расхода газов через эжектор. Постоянные предельные значения, не зависящие от противодавления, принимают коэффициент эжекции п и параметры смеси газов — приведенная скорость Лз и полное давление Pg. В случае дозвукового течения (Лз < 1) при этом был бы постоянным коэффициент сохранения полного давления в диффузоре a = /( a),. а следовательно, и полное давление газа на выходе из диффузора Pi = ОдРз. Другими словами, все режимы работы эжектора, соответствующие противодавлению, меньшему критического значения, при Яз < 1 выражались бы одной точкой характеристики S(p4 = onst, и = onst). Однако экспериментальные данные показывают, что характеристика эжектора не обрывается в точке В снижение противодавления на критическом режиме всегда приводит к падению полного давления смеси при постоянном значении коэффициента эжекции (ветвь ВС). Легко убедиться, что это возможно только при сверхзвуковой скорости потока на входе в диффузор. Действительно, при Яз > 1 диффузор работает  [c.531]

Поскольку а ==yTRT то каждому сечению сопла должна соответствовать своя местная скорость звука, определяемая величинами р и ив данном сечении. Для выходного сечения сопла, когда = а, давление на срезе сопла должно быть равно критическому. В рассматриваемом случае скорость не может превысить критическую, и скорость газа, равная скорости звука, может иметь место только в минимальном (выходном) сечении сопла.  [c.134]

Пусть в сопло указанной конфигурации (рис. 206, а) поступает дозвуковой поток газа. Согласно уравнению Гюгонио в сужающейся (конфузорной) части скорость газа будет возрастать, а давление и плотность падать. Если в минимальном сечении (горле) скорость не достигнет критической, то в расширяющейся (диффузорной) части дозвуковой поток газа будет тормозиться, давление и плотность — возрастать и на выходе установится значение М < 1. Такой режим течения установится, если давление на выходе из сопла (противодавление) больше, чем некоторое граничное Рхгр, при котором в горле сопла устанавливаются критические параметры течения. Если теперь противодавление будет уменьшаться, то так как весь поток дозвуковой, возмущения в виде малых понижений давления будут распространяться вверх по течению, скорость потока во всех сечениях будет возрастать и при значении противодавления в горле будет достигнута звуковая (критическая) скорость и соответствующие ей значения р,,, Т . При этом режиме в диффузорной части происходит торможение потока от значения М = 1 в горле до некоторого Мх <1 — на срезе сопла. Если же противодавление далее уменьшится до значения р < р гр. то уменьшится давление и во всей диффузорной части. Но в горле давление не может сделаться меньшим, чем р, по причинам, которые мы выяснили, изучая истечение через сужающееся сопло. Поэтому на некотором участке диффузорной части, начиная от горла, поток получит возможность расширения и там установится сверхзвуковое течение. Однако, если давление Р1 на срезе недостаточно мало, то вблизи выхода поток будет все еще дозвуковым. Сопряжение сверхзвукового потока за горлом с дозвуковым вблизи выхода происходит в виде скачка уплотнения, который мы будем приближенно считать прямым. При дальнейшем понижении противодавления скачок уплотнения будет перемещаться внутри сопла к его выходному сечению и при некотором расчетном давлении Рхра ч расположится за срезом сопла. При этом значении противодавления на срезе устанавливается скорость, соответствующая расчетному значению числа Мхрасч > 1. При дальнейшем понижении противодавления поток будет на некотором участке вне сопла продолжать расширяться, а переход к дозвуковому режиму и полному торможению будет осуществляться через сложную систему косых скачков уплотнения.  [c.453]

Рассмотрим докритическнй режим течения, при котором скорость Ша истечения газа из сопла меньше критической скорости Шнр = с.,, а давление газа р., в выходном сечении сопла больше критического давления истечения / р и равно давлению внешней среды р, в которую происходит истечение, т. е. р. = р > р р. Так как /j, p = = Ppi, то отсюда получаем следующее условие существования докритического режима истечения для случая W-, = 0  [c.338]

По мере уменьшения давления окружающей среды р уменьшается давление на срезе сопла. Однако опыт показывает, что при уменьшении давления среды до значений Рц<ркр давление р па срезе коио-идалыюго сопла остается постоянным и равным критическому р,ф. В связи с этим истечение и расход газа при Р < р,ф также остаются постоянными (линия Ь с) и равными их значениям в точке Ь, т. е. критическим ш,ф и Л4 р. Формулы для определения критических скорости ш р и расхода (И, р можно получить из (I77) и (578) путем подстановки в них вместо р/р, отношения давлений Ркр/рх (579)  [c.237]

Отношение скорости течения газа v в данной точке потока к критической скоростид называется коэффициентом скорости  [c.169]

В первой части, начинающейся с момента открытия выпускного клапана и кончающейся несколько позднее н. м. т., газы выходят из цилиндра под действием значительного перепада давлений. Так как в момент открытия клапана давление газов в цилиндре составляет 3—6 Kzj M , то в самом начале первой части выпуска истечение газов происходит с критической скоростью порядка 400—600 Mj eK. К концу первой части выпуска давление в цилиндре уменьшается и истечение происходит со скоростями ниже критических.  [c.13]


Как известно, для предотвращения выноса в газоходы значительных количеств воды необходимо, чтобы скорость газов в контактной камере не превышала так называемых критических значений, зависящих от размера элементов насадки, плотности орошения ее водой и других факторов. Для полного устранения уноса капель воды необходимо, чтобы скорость газов в камере была заметно ниже критической. Кроме того, важно обеспечить подачу исходной воды в контактную камеру без дробления ее на мелкие капли и брызги. Это может быть достигнуто путем применения безнапорных корытчатых или трубчатых напорных водораспределителей непосредственно над насадкой с отверстиями диаметром 5—10 мм, число которых зассчитано на Небольшое давление воды до 0,2—0,3 кгс/ал . Наконец, при соблюдении указанных выше условий для полного устранения уноса капель воды на выходе из контактной камеры следует устанавливать специальные каплеулавливающие устройства, например неорошаемый слой кольцевых насадок. Кроме того, целесообразно предусматривать необходимые дренажи с гидравлическими затворами из всех нижних точек газоходов, где может скапливаться влага, в том числе и из всасывающей коробки и корпуса дымососа.  [c.181]

При вытекании газа из насадкн в неподвижный воздух образуется струя, характер которой зависит от того, вытекает ли из насадки ламинарный или турбулентный поток. Если поток ламинарный, то струя из насадки движется, сначала практически не расширяясь, и ее массообмен с окружающим воздухом происходит только путем молекулярной диффузии, т. е. очень медленно Лишь на некотором расстоянии Н от сопла появляются гребни и завихрения, указывающие на наступление турбулентного состояния, которое постепенно охватывает все сечение факела. По мере увеличения скорости вытекания газа расстояние Н уменьшается (рис. 55 и 56) и становится близким к нулю в области критических значений числа Рейнольдса (для вытекающего потока). Размытые края струи до начала турбулентного состояния (см. рис. 55) указывают на наличие процесса молекулярной диффузии между газом и окружающей воздушной оболочкой, увлекаемой движущимся газом [63]. Взаимодействие этих потоков, по-видимому, и приводит в конце концов к турбулизацин струи газа. В горящем факеле расстояние Я до начала турбулентного состояния несколько больше (сказывается влияние температуры), чем в холодной струе, при одинаковой в обоих случаях скоростях газа, причем горение здесь происходит по периферии газовой струи, т. е. там, где в результате молекулярной диффузии образуется стехиометрическая смесь следует отметить, что в этой части факел имеет форму ровного пучка.  [c.112]

Аналогичные нестатические процессы широко встречаются и в двухфазных средах при возникновении фазовых переходов, а именно в тех случаях, когда скорость изменения параметров в потоке превосходит скорость образования ядер конденсации в паре и ядер испарения (пузырьков пара) в самоиспаряющейся жидкости. Для выявления некоторых особенностей метастабильных состояний интересно рассмотреть систему [Л. 33], описываемую уравнением Ван-дер-Ва-альса. При температуре ниже критической изотерма имеет вид, изображенный на рис. 2-1. На нем часть изотермы СЕ соответствует газообразному состоянию, а BF — жидкому. Участок СВ отвечает неустойчивому состоянию системы. При изотермическом сжатии состояние системы меняется по ED, причем для квазистатических процессов газ начнет конденсироваться в точке D и изменение состояния при дальнейшем сжатии будет соответствовать прямолинейному участку изотермы DA. При определенных условиях для чистых веществ удается получить газообразные состояния, соответствующие участку изотермы D. Аналогично если в жидкости нет пузырьков газа, то при изотермическом расширении достигаются состояния, соответствующие участку АВ. Однородные состояния, изображенные участками изотерм  [c.25]


Смотреть страницы где упоминается термин Скорость газа критическая в точке : [c.186]    [c.233]    [c.517]    [c.536]    [c.313]    [c.429]    [c.300]    [c.363]    [c.277]    [c.46]    [c.99]    [c.165]    [c.693]    [c.71]    [c.163]   
Механика жидкости и газа (1978) -- [ c.48 ]



ПОИСК



Давление в критической точке потока газа. Измерение скорости движения газа

Критические точки. См, точки критические

Скорость газа критическая

Скорость газов

Скорость критическая

Скорость точки

Точка критическая



© 2025 Mash-xxl.info Реклама на сайте