Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства вязкость

При выборе материалов необходимо также знать и учитывать их химический состав и механические свойства (вязкость, пластичность, хрупкость и твердость).  [c.241]

Таблица 12. Изменение механических свойств, вязкости разрушения и сопротивления коррозионному растрескиванию сплава Т1—6А1—4У. Таблица 12. Изменение механических свойств, <a href="/info/23892">вязкости разрушения</a> и сопротивления <a href="/info/1553">коррозионному растрескиванию</a> сплава Т1—6А1—4У.

Вязкость является одним из основных механических свойств. Вязкость выражает способность материала поглощать работу внешних сил за счет пластической деформации. Для оценки вязкости материалов и установления их склонности к переходу из вязкого 116  [c.116]

Из рассмотренных выше теоретических положений следует, что величина резерва смазки в подшипнике является функцией многих переменных и зависит от физико-химических свойств смазки, конструктивных особенностей узла трения и условий его эксплуатации. Физико-химические свойства смазочного материала оказывают влияние на резерв смазки в подшипниках как при смазывании маслами, так и пластичными смазками. Для масел определяющее значение имеют их поверхностные свойства (поверхностное натяжение, краевой угол смачивания, работа адгезии), для пластичных смазок-объемно-механические свойства (вязкость, предел прочности на сдвиг). Важное значение из условий работы узла трения имеют частота вращения подшипника, температура, интенсивность вибрации его деталей и характер окружающей среды. Из конструктивных факторов можно указать на диаметр подшипника, ширину колец, форму и размеры желоба на них, тип сепаратора, наличие и качество уплотнений, расположение вала (вертикальное или горизонтальное) и многие другие.  [c.26]

Укрупнение зериа аустенита в стали почти не отражается на статистических характеристиках механических свойств (твердость. сопротивление разрыву, предел текучести, относительное удлинение), ио сильно снижает ударную вязкость, особенно при высокой твердости (отпуск при низкой температуре). Это явление сказывается из-за повышения порога хладноломкости с укрупнением зерна.  [c.241]

Для низкоуглеродистых нелегированных сталей разница в свойствах между отожженным и нормализованным состояниями практически отсутствует и рекомендуется эти стали подвергать не отжигу а нормализации. Для среднеуглеродистых сталей (0,3—0,5% С) различие в свойствах нормализованной и отожженной стали более значительно в этом случае нормализация не может заменить отжига. Но для этих сталей нормализацией часто за.меняют более дорогую операцию улучшения. Нормализация в этом случае придает стали по сравнению с отожженным состоянием более высокую прочность, но по сравнению с улучшенным состоянием нормализованная сталь имеет несколько меньшую пластичность и вязкость. Для неответственных деталей нормализация дает достаточно удовлетворительные механические свойства для ответственных деталей следует все же применять улучшение.  [c.311]


При низком отпуске прочность будет повышенной (ав= = 160- 170 кгс/мм ), а пластичность и вязкость — низкими. Поэтому для этих сталей необходим более высокий отпуск, который обычно проводят при 550—600°С. При этой температуре происходит полный распад мартенсита с образованием зе])нистой высокодисперсной феррито-карбидной смеси — сорбита. Механические свойства при этом будут примерно такими же, как и при низкотемпературном отпуске малоуглеродистых сталей, т. е. OB=120-f-130 кгс/мм , il3 = 50- 60% н II =124-14 кгс-м/см2.  [c.372]

В табл. 33 приведены механические свойства некоторых высокопрочных цементуемых сталей. Следует учитывать, что увеличение содержания углерода (и пределах марочного состава) и скорости охлаждения при закалке приводит не только к повышению прочности, но и к снижению пластичности и вязкости.  [c.380]

Поэтому для машиностроительных деталей небольших сечений высокие механические свойства получаются при простых легированных сталях типа 40Х. Присадка бора ( 0,003%) увеличивает предельный диаметр изделия, но несколько повышает порог хладноломкости, хотя запас вязкости будет не хуже, чем в углеродистых сталях.  [c.386]

Механические свойства. Основные из них — прочность, пластичность, твердость и ударная вязкость. Внешняя нагрузка вызывает в твердом теле напряжение и деформацию. Напряжение — это нагрузка (сила), отнесенная к площади поперечного сечения, МПа  [c.8]

Кислый мартеновский процесс. Этим способом выплавляют качественные стали. Поскольку и печах с кислой футеровкой нельзя навести основной шлак для удаления фосфора и серы, то применяют шихту с низким содержанием этих составляющих. Стали, выплавляемые в кислых мартеновских печах, содержат меньше водорода н кислорода, неметаллических включений, чем выплавленные в основной печи. Поэтому кислая сталь имеет более высокие механические свойства, особенно ударную вязкость и пластичность, и ее используют для особо ответственных деталей коленчатых валов крупных двигателей, роторов мощных турбин, шарикоподшипников.  [c.35]

Металл с явно выраженной волокнистой макроструктурой характеризуется анизотропией (векториальностью) механических свойств. При этом характеристики прочности (предел текучести, временное сопротивление и др.) в разных направлениях отличаются незначительно, а характеристики пластичности (относительное удлинение, ударная вязкость и др.) вдоль волокон выше, чем поперек их.  [c.59]

Углеродистые литейные стали обладают высокими временным сопротивлением (400—600 МПа), относительным удлинением (10— 24 %), ударной вязкостью, достаточной износостойкостью при ударных нагрузках. Основной элемент, определяющий механические свойства углеродистых литейных сталей — углерод.  [c.165]

Заметное изменение физико-механических свойств полиформальдегида наблюдается лишь при температурах выше 120° С. Высокая удельная ударная вязкость полиформальдегида (11,2 Мн/лг2 при 20° С) не является следствием повышенной эла-  [c.435]

Механические свойства пропитанного графита, особенно его ударная вязкость, значительно ниже. механической прочности металлов.  [c.455]

Сернистые включения сильно снижают механические свойства, особенно ударную вязкость (а,,) и пластичность (й, я )) в поперечном наиравлении вытяжки при прокатке и ковке, а также предел выносливости. Работа зарождения трещины не зависит от содержания серы, а работа развития треш,ины Яр с увеличением содержания серы резко падает. Свариваемость и коррозионную стойкость сернистые включения ухудшают. Содержание серы в стали строго ограничивается, оно не должно превышать 0,035—0,06 %.  [c.130]

На рис. 9.6 показано влияние температуры отпуска на механические свойства закаленной стали. С повышением температуры отпуска твердость ИВ и предел прочности стали понижаются, вязкость а и пластичность 8 и повышаются. Значительное изменение механических свойств стали происходит при температурах отпуска выше 400° С.  [c.120]


Высокий отпуск осуществляется нагревом закаленной стали до температур 500—650° С, при которых полностью устраняются внутренние напряжения и образуется сорбит отпуска. В результате этого сталь приобретает наилучший комплекс механических свойств повышенную прочность, вязкость и пластичность. Высокий отпуск применяется для изделий из конструкционных сталей, подверженных воздействию высоких напряжений.  [c.122]

Конструкционные стали применяют для изготовления деталей машин и механизмов. В зависимости от условий работы они должны обладать необходимыми механическими свойствами высокой прочностью при больших статических нагрузках, пластичностью и вязкостью при динамических воздействиях, достаточной выносливостью при знакопеременных нагрузках, твердостью и износоустойчивостью. На рис. 12.1 показана зависимость механических свойств стали от прочности.  [c.177]

Штамповые стали должны устойчиво сохранять повышенные механические свойства при высоких температурах (их обрабатывают так, чтобы получить большую вязкость при меньшей твердости по сравнению со сталями других групп).  [c.234]

Развитое пристенное турбулентное движение рассматривается как движение двух кинематически и динамически взаимосвязанных вязкой и турбулентного сред, отличающихся друг от друга физико-механическими свойствами (вязкостью, теплопроводностью и диффузией). При определенных условиях образуется как бы двухфазная среда вязкая возле твердой поверхности и турбулентная - в основном потоке, при этом поверхность сред покрыта сложной системой волн (табл. 3.1, по Ф. Г. Галимзянову). Волновая поверхность раздела имеет пространственную трехмерную структуру. Волны сильно изменяются по дтине и амплитуде. Некоторые волны могут иметь амплитуду большутэ, чем толщина вязкой среды возле твердой поверхности. При движении турбулентной среды по кривым линиям тока, образованным волнами (рис. 3.1), возникают центробежные силы, которые уравновешиваются град-  [c.48]

Сопоставление механических свойств, вязкости разруще-ния и данных по КР сплавов Х7050, 7049 и сплава типа  [c.275]

Перлито-ферритные ковкие чугуны с указанной выше оптимальной структурой превосходят по своим антифрикционным свойствам остальные заменители, нами испытанные (легированные серые чугуны, алькусин, бронза). Еще более ощутительно преимущество антифрикционных ковких чугунов над серыми в условиях работы при неспокойной, ударной, переменной нагрузке, так как первые обладают значительно более высокими механическими свойствами вязкостью и пластичностью, которыми вторые не обладают.  [c.348]

См зочные материалы и масла, предназйаченные для консервации мёталлоконструкций машин, имеют углеводородную природу и разрушаются микроорганизмами. После воздействия грибов и бактерий смазочные материалы становятся коррозионно-активными, так как в них накапливаются органические кислоты — изменяются также физико-механические свойства (вязкость, пластич-йрсть) этих материалов.  [c.328]

Введение ванадия в среднеуглеродистую сталь с хромом оказывает такое же влияние, как и на низкоуглеродистую, т. е. улучшает износостойкость и механические свойства (вязкость и пластичность) и позволяет применять ее для изготовления ответственных деталей. Из нее могут изготовляться такие детали, как коленчатые валы, шатуны, шестерни. Изготовляют из нее также и различные менее нагруженные детали — втулки, осп, траверсы. Применение этой стали ограничивается ее относительно небольшой прокалнваемостью и некоторой склонностью к отпускной хрупкости.  [c.361]

Растяжение мышцы пов1 шает чувствительность к вибрации. Одиако это зависит от исходного уровня спонтанной активности если он высок, то дополнительное растяжение тормозит синхронизацию импульсов с частотой вибрации если исходный уровень низкий, тогда синхронизация повышается. Было обнаружено, что в ответ на вибрацию мышцы не при всех частотах удается наблюдать потенциалы, снимаемые с соответствующего нервного волокна, иннервирующего мышечное веретено. В диапазоне вибрации с частотой 25— 500 Гц наблюдается несколько провалов, когда снимаемый потенциал либо намного меньше максимального, либо полностью отсутствует. Результаты исследования дают основание сделать вывод, что характер реакции в ответ на вибрацию определяется структурой мышечного веретена, ее физическими и механическими свойствами вязкостью, эластичностью. Показано, что максимальная величина потенциала наблюдается при вибрации с частотами 100—200 Гц. Это может быть объяснено лишь наличием структур, для которых частоты вибрации являются резонансными.  [c.75]

Наличие марганца в сталях повышает ударную вязкость и хладноломкость, обеспечивая удовлетворительную свариваемость. По сравнению с другими низколегированными сталями марганцевые позволяют получить сварные соединения более высокой прочности при зпакопе])оменных и ударных нагрузках. Введение в ии колегированные стали небольшого количества меди (0,3— 0,4%) повытнает стойкость стали против коррозии атмосферной и в морской воде. Для изготовления сварных конструкций низколегированные стали используют в горячекатаном состоянии. Термообработка значительно улучшает механические свойства стали, которые однако зависят от толщины проката. При этом может быть достигнуто значительное снижение порога хладноломкости. Поэтому в последние годы некоторые марки низколегированных сталей для производства сварных конструкций используют после упрочняющей термообработки.  [c.208]

Механические свойства сварных соединений, сваренных приведенными выше сварочными материалами, кроме ударной вязкости в зоне термического влияния, соответствуют свойствам основного металла. Швы, выполненные автоматической сваркой под флюсом электродной проволокой марки Св-13Х25Н18 (а также и при ручной дуговой сварке электродами на этой проволоке, например марки ЦЛ-8), оказываются склонными к межкристал-литной коррозии, определяемой, видимо, повышенным содержанием углерода и отсутствием стабилизируюш,их элементов.  [c.277]


Напомним условные обозначения механических свойств, так как в дальнейшем они часто будут использоваться <Тв—предел арочиостп От или 00,2— предел текучести б — относительное удлинение F — относительное сужение Ян —ударная вязкость ЯА —твердость по Бринеллю ЯЛС — твердость по Роквеллу (шкала С), подробнее см. стр. ООО.  [c.181]

Наличие такой полосчатой структуры вызывает сильную анизотропию свойств, т. е. различие свойств образцов, вырезанных вдоль и поперек прокатки. В основном снижение так называемых поперечных свойств проявляется на характеристиках, связанных с заключительной стадией деформации (ударная вязкость, относительное сужение), другие механические свойства менее чувствительно реагируют на полосчатость. Анизотропию свойств характеризуют отношением ХпопДпрод, где X — свойство металла в (поперечном и продольном наяравле-ниях. Обычно ударная вязкость в поперечном направлении вдвое меньше, чем в продольном (соответственно коэффициент анизотроппи 0,5) путем повышения чистоты металла по сере и кислороду, используя усовершенствованные методы выплавки пли уменьшая строчечность совершенствованием методов прокатки ( поперечная прокатка ), коэффициент анизотропии ударной вязкости повышается до 0,7—0,8.  [c.191]

Если нужно получить высокую прочность и высокие пластичность и вязкость в изделиях крупных размеров, то потребуется уже легированная, прокаливающаяся на большую глубину сталь, например сталь 40Х и 40ХНМ. Механические свойства этих сталей, в зависимости от температуры отпуска и размера сечения, представлены на рис. 299, б и 299, а.  [c.389]

Понижение порога хладноломкости и увеличение содер ка-ния волокна (%) в изломе приводит к поеышепию механических свойств. Наиболее простым решением вопроса является введение в сталь никеля, элемента, — понижающего температуру перехода в хладноломкое состояние и поэтому увеличивающего долю волокна в изломе в высокояроч.нон стали. В связи с этим улучшаются вязкие свойства, однако в обычных сталях нельзя увеличить содержание никеля свыше 4%, так как появляется остаточный аустенит (имеющий пониженную прочность, а продукты его распада пониженную вязкость), понижается то1Ч,ка A i и нельзя провести высокий отпуск. Решение задачи применения высоконикелевой стали состояло в одновременном легировании стали никелем и кобальтом. Кобальт повышает мартенситную точку (рис. 303) и уменьшает поэтому количество остаточного аустенита (рис. 303,6). Одновременно кобальт повышает точку A i и позволяет провести операцию высокого отпуска.  [c.392]

При штамповке в горячем состоянии штампуемый металл под действием сближающихся половинок штампа деформируется и заполняет внутреннюю полость штампа. В работе внутренняя полость штампа ( фигура ), которая деформирует металл, соприкасается с нагретым металлом, поэтому штамповал сталь для горячей штамиовки должна обладать не только определенными механическими свойствами в холодном состоянии, но и достаточно высокими механическими свойствами в нагретом состоянии. Особенно желательно иметь высокий предел текучести (упругости), чтобы при высоких давлениях штамп не деформировался. Для кузнечных штампов большое значение имеет и вязкость, чтобы штамп не разрушился во время работы при ударах по деформируемому металлу. Устойчивость против износа во всех случаях очень важна, так как она обеспечивает сохранение размеров фигуры —долгогзеч-ность работы ujTaMna.  [c.432]

С понижением содержания углерода в чугуне механические свойства отливок повышаются. Повышенное содержание марганца уве-личирает длительность отжига, понижает пластичность и повышает временное сопротивление. Сера и фосфор понижают пластичность и ударную вязкость ковкого чугуна. Поэтому их содержание не должно превыи]ать 0,12 %.  [c.163]

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и соиротивление разрушению (пластичность, вязкость, а также сиособность металла не разрушаться при наличии треш,ин).  [c.60]

Введение 0,1—0,2 о V (40ХФА) новьннает механические свойства хромистых сталей, главным об .)азом вязкость, вследствие лучшего связывания газов и измельчения зерна без увеличения прокаливае-мости. Эти стали применяют д.ля изделий, работающих при повышен ных динамических нагрузках (н1атуны, шестерни).  [c.268]

Стали, применяемые для штампов, деформирующих металл в горячем состоянии, должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать окалпностой-  [c.304]

Р почти не влияет на структуру чугуна, так как не ускоряет и не замедляет графитообразования. Твердость чугуна от присутствия Р в твердом растворе повышается, а вязкость значительно понижается. Следовательно, Р ухудшает механические свойства чугуна, однако улучшает литейные свойства, понижает температуру плавления, увеличивает жидкотекучесть и способствует хорошему заполнению формы. В обычном литье содержится 0,1—0,9% Р высококачественное литье должно содержать не более 0,4% Р.  [c.73]


Смотреть страницы где упоминается термин Механические свойства вязкость : [c.92]    [c.231]    [c.298]    [c.172]    [c.220]    [c.190]    [c.380]    [c.13]    [c.73]    [c.158]    [c.177]    [c.272]    [c.326]   
Аморфные металлы (1987) -- [ c.212 , c.244 , c.246 , c.291 ]



ПОИСК



112 - Механические свойства 113 - Нормы ударной вязкости

119 - Используемые стали 119 - Механические свойства и условия испытания растяжении 121 - Ударная вязкость

224 — Химический состав 233 — Цен мической промышленности, вагоностроения и мостостроения — Коррозионная стойкость 218 — Марки 217 Механические свойства 218—220 — Назначение 217 — Ударная вязкость

37, 65 — Вязкость ударная 38 Диаграммы структурные 37, 39 Коррозионная стойкость 38, 39 Магнитные свойства 36, 40 — Механические свойства

Механические пониженной прокаливаемости — Вязкость ударная и выносливость контактная 251 —Механические свойства 250, 251 — Назначение

Прокат — Вязкость ударная 248 — Сортамент качества — Вязкость ударная 231 Механические свойства при различных температурах 232, 233 — Толщина — Разряды

Среднеуглеродистая пониженной прокаливаемости — Вязкость ударная и выносливость контактная 251 —Механические свойства 250, 251 — Назначение

Старение искусственное, влияние механические свойства и вязкость

Схема углеродистые 10 - Механические свойства 12 - Ударная вязкость 12 - Химический состав

Штамповые стали повышенной теплостойкости и вязкости — Влияние температур закалки на твердость н величину зерна на механические свойства



© 2025 Mash-xxl.info Реклама на сайте