Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Импульс синхронизация мод

Принцип генерации ультракоротких импульсов синхронизация мод  [c.91]

В зависимости от режима работы различают ОКГ, работающие в непрерывном режиме, в импульсном режиме с длительностью импульса 10 — 10 с, режиме гигантских импульсов с длительностью 10 — 10" с и так называемом режиме синхронизации мод, при котором длительность импульса может быть 10" —10 с. Подробнее режимы работы различных типов ОКГ будут рассмотрены в п. 4—6.  [c.17]


Лазер может работать в так называемом режиме синхронизации мод и генерировать при этом импульсы, длительность которых  [c.32]

Такой процесс синхронизации мод можно осуществить с помощью периодической модуляции добротности резонатора в процессе развития генерации. Частота внешней периодической модуляции должна быть при этом равной частотному интервалу между модами [20], Синхронизация мод приводит к циркуляции внутри резонатора одного короткого импульса. На выходе из ОКГ получается цуг пикосекундных импульсов, следующих друг за другом с интервалом времени, равным времени прохождения света в резонаторе от полупрозрачного зеркала до глухого и обратно, т. е. % = 2L/ .  [c.32]

Особый класс составляет ЛК с распределённой обратной связью (РОС). В РОС-лазерах роль резонатора играет структура с периодич. изменением показателя преломления и (или) усиления. Обычно она создаётся в активной среде под действием двух интерферирующих пучков накачки. РОС-лазер характеризуется узкой линией генерации ( 10 см ), к-рая может легко перестраиваться в пределах полосы усиления путём изменения угла между пучками накачки. ЛК наиболее эффективны для генерации ультракоротких импульсов излучения. Самые короткие импульсы ( 10 с) достигнуты в непрерывных ЛК с пассивной синхронизацией мод.  [c.564]

Более подробно изучается режим синхронизации мод, включены новые разделы, касающиеся лазеров с разгрузкой резонатора и методов сжатия оптического импульса.  [c.8]

Не вдаваясь на этом этапе в какие-либо детали, заметим лишь, что при помощи специального метода, называемого синхронизацией мод, можно получить импульсы света, длительность которых приблизительно обратно пропорциональна ширине линии перехода 2- 1. Например, в газовых лазерах, ширина линии усиления которых относительно узкая, можно получать импульсы излучения длительностью 0,1 —1 не. Такие импульсы не рассматриваются как очень короткие, поскольку даже неко-  [c.22]

Прежде чем продолжить рассмотрение явления синхронизации мод, имеет смысл подытожить и прокомментировать полученные к настоящему моменту основные результаты. Мы установили, что условие синхронизации мод (5.106) определяет выходной пучок, который представляет собой цуг синхронизованных по фазе импульсов, причем длительность каждого импульса  [c.308]

Здесь используется параметр а, встречающийся в выражении (5.118). Однако заметим, что из-за наличия в (5.117) квадратичного по модовому индексу I фазового члена 1 2 функция E t) имеет теперь квадратичный по времени фазовый член Отсюда следует, что у несущей частоты волны ио + 2р/ появилось линейное по времени смещение. Значение величины р и тем самым величина этого смещения зависит от <р2 в (5.117), однако точное выражение для 2р/ мы здесь не будем приводить, поскольку в дальнейшем оно не понадобится. Однако следует подчеркнуть, что импульс с линейно меняющейся во времени частотой, представленный в форме (5.118), может на самом деле быть получен при выполнении определенных условий синхронизации мод, определяемых выражением (5.117). Теперь нетрудно показать, что длительность импульса вида (5.118) не определяется обратной шириной спектра. Чтобы убедиться в этом, вычислим спектральную ширину импульса, применяя преобразование Фурье к выражению (5.118). Оказывается, что в этом случае ширина линии генерации равна  [c.312]


Принцип действия АМ-синхронизации мод, возможно, легче понять, если рассматривать ее во временном, а не в частотном представлении. На рис. 5.41, а показана временная зависимость потерь Y резонатора, которые модулируются на частоте Д(о. Будем считать, что модулятор расположен вблизи одного из зеркал резонатора. Если Д(о = Д(о, то период модуляции Г равен времени полного прохода резонатора 2L/ . В этом случае световые импульсы в резонаторе будут изменяться со временем так, как показано на рис. 5.41, а. Действительно, импульс, который проходит через модулятор в момент времени при минимальных потерях, будет снова возвращаться в модулятор через интервал времени 2L/ , когда потери вновь станут минимальными. Если же предположить, что импульс изначально проходит через модулятор в момент времени, скажем, чуть раньше tm (показан сплошной кривой на рис. 5.41,6), то благодаря переменным во времени потерям модулятора передний фронт импульса  [c.313]

После этого предварительного рассмотрения АМ-синхронизации мод можно исследовать физические явления, которые определяют длительность импульсов в режиме синхронизации мод. В зависимости от того, однородно или неоднородно уширенной является лазерная линия, эти явления оказываются совершенно различными. В случае неоднородно уширенной линии и при значительном превышении над порогом полоса генерации Av ген стремится занять всю шири-ну лазерной линии Avo-Предполагая, что амплитуды мод имеют гауссово распределение, из выражения (5.116) получаем  [c.314]

КИМ образом, чтобы период повторения импульсов 2L/ был равен периоду следования импульсов лазера накачки. Тогда импульсы накачиваемого лазера будут синхронизованы с импульсами лазера накачки, и поэтому данный метод называют синхронизацией мод при синхронной накачке. Этот тип накачки можно также осуществить в полупроводниковом лазере, пропуская через диодный переход ток в виде импульсов с частотой повторения /2L, где L — длина резонатора полупроводникового лазера. В обоих случаях зависимость усиления лазера от времени при такой импульсной накачке имеет вид, показанный  [c.317]

Хотя во многих лазерах с пассивной синхронизацией мод применяются быстрые насыщающиеся поглотители, в некоторых условиях синхронизацию мод могут обеспечить также медленные насыщающиеся поглотители. Это возможно, когда энергия насыщения усиливающей среды сравнима с энергией насыщения поглотителя, хотя и несколько превышает ее. К синхронизации мод в этом случае приводят весьма тонкие физические явления [28], которые мы опишем с помощью рис. 5.45. Для простоты предположим, что как насыщающийся поглотитель, так и активная среда помещены вместе в одну и ту же кювету на одном из концов лазерного резонатора. Будем считать, что до появления импульса потери преобладают над усилением, поэтому участок переднего фронта импульса испытывает ослабление. С некоторого момента времени в течение переднего фронта импульса, когда накопленная плотность энергии импульса станет сравни-  [c.318]

Рис. 5.45. Непрерывная синхронизация мод с помощью медленно насыщающегося поглотителя. Заметим, что на рисунке ие соблюдается масштаб, поскольку длительность синхронизованного импульса обычно меньше 1 пс, тогда как интервал времени между двумя последовательными импульсами Тр, т. е. время обхода резонатора, равно обычно нескольким наносекундам. Рис. 5.45. Непрерывная синхронизация мод с помощью медленно насыщающегося поглотителя. Заметим, что на рисунке ие соблюдается масштаб, поскольку длительность синхронизованного импульса обычно меньше 1 пс, тогда как интервал времени между двумя последовательными импульсами Тр, т. е. время обхода резонатора, равно обычно нескольким наносекундам.
В случае синхронизации мод при непрерывной накачке выходной пучок состоит из непрерывного цуга импульсов, в котором интервал между двумя соседними импульсами равен времени полного прохода резонатора 2L/ (см. рис. 5,46,6). Активная синхронизация осуществляется, как правило, либо модулятором на ячейке Поккельса, либо акустическим модулятором, что более общепринято, поскольку потери, вносимые этим модулятором в резонатор, меньше, Акустооптический модулятор, используемый для синхронизации мод, отличается от того, который применяется при модуляции добротности (см, рис, 5,30), поскольку грань, к которой прикреплен преобразователь, и противоположная грань оптического блока вырезаны параллельно друг другу. Звуковая волна, возбуждаемая преобразователем, теперь отражается назад противоположной гранью блока. Если длина оптического блока равна целому числу полуволн звуковой волны, то возникают звуковые стоячие волны, В этих условиях, если частота звуковой волны равна и, дифракционные потери будут промодулированы с частотой 2(о. Действительно, дифракционные потери достигают максимума в те моменты времени, когда имеет место максимум амплитуды стоячей волны.  [c.321]


В случае непрерывного лазера с модуляцией добротности метод разгрузки резонатора можно использовать периодически для получения цуга ультракоротких импульсов, частота следования которых равна теперь частоте работы устройства разгрузки, а не частоте повторения /2L, устанавливаемой временем полного прохода резонатора. Если эта частота достаточно низка (100 кГц—1 МГц), то соответствующий промежуток между двумя последовательными разгрузками резонатора (1 — 10 мкс) обеспечивает достаточное время для восстановления синхронизации мод. Поэтому метод периодической разгрузки резонатора позволяет получить последовательность ультракоротких лазерных импульсов при намного более низкой частоте  [c.324]

Пусть ширина линии излучения Не — Ые-лазера в режиме синхронизации мод равна 0,6 ГГц, а его спектр можно приближенно описать функцией Гаусса. Вычислите соответствующую длительность выходного импульса в случае, когда выполняется условие синхронизации мод,  [c.328]

У Nd YAG-лазера, работаюш,его на длине волны "к — 1,06 мкм, линия излучения имеет однородную ширину Avo 195 ГГц. Вычислите ожидаемую длительность импульса лазера, если длина его резонатора L = 1,5 м, а синхронизация мод в нем осуществляется с помощью акустооптического модулятора. Какой была бы длительность импульса, если бы линия была неоднородно уширена Вычислите частоту напряжения, которое необходимо приложить к акустооптическому модулятору, когда он помещен на одном из концов резонатора.  [c.329]

ЖИМ генерации (поскольку ширина линии Avo велика), ширина линии излучения оказывается часто порядка гигагерц. Разумеется, не всегда нужна очень узкая ширина линии излучения. Вспомним, например, что для получения очень коротких световых импульсов (синхронизация мод) желательно иметь генерацию в пределах как можно более широкой полосы частот.  [c.443]

Ввиду сравнительной малости величины довольно трудно за]зегистрировать четвертую гармонику. Поэтому исследователям для ее возбуждения пришлось использовать мощные импульсы длительностью порядка 10 пс, полученные с помощью так называемого лазера синхронизации мод. Тщательно проведенные опыты С. А. Ахманову и сотрудникам позволили не только зарегистрировать четвертую гармонику, но и измерить величину нелинейной восприимчивости Знание величин восприимчивостей кроме технической нужды квантовой электроники также позволяет проверить правильность теории моделей, на основе которых рассчитываются эти восприимчивости.  [c.394]

Синхронизацию мод можно осуществить при использовании фототропных затворов. Такой затвор, помещенный внутрь резонатора между глухим зеркалом и рабочим телом (рис. 17), автоматически вызывает синхронизацию, и лазер при этом также излучает последовательность пикосекундных импульсов. Действие фототропного самопросветляющего затвора сводится к тому, что, являясь нелинейным поглотителем, он сильнее подавляет малые флюктуации интенсивности и слабее большие, что приводит к наиболее быстрому усилению и сужению самого интенсивного флюк-туационного пичка.  [c.32]

Внутрирезоваторные лазерные М. с. Кроме описанных выше М. с., воздействующих на проходящий световой пучок, возможно управление оптич. излучением при его генерации. Напр., модуляция излучения полупроводникового лазера осуществляется модуляцией тока накачки. В газовых и твердотельных лазерах внесение в резонатор переменных потерь приводит к амплитудной модуляции излучения. При этом внутрирезо-наторная модуляция, как правило, значительно эффективнее модуляции проходящего света. Введение в резонатор лазера фазового М. с. позволяет изменять оптич, длину резонатора и осуществлять частотную модуляцию излучения. Полоса частот внутрирезонатор-ных М. с. должна быть меньше разности частот генерируемых лазером мод До). При приближении частоты внеш. воздействия к Дш начинается эфф. взаимодействие между модами лазера, приводящее К синхронизации мод и генерации лазером коротких оптич. импульсов. Осп. недостатком внутрирезонаторных М. с. является то, что внесение в резонатор дополнит, элементов снижает общую мощность излучения лазера и ухудшает стабильность генерации.  [c.183]

Интересным случаем внутр. М. с. является режим синхронизации мод, к-рый осуществляется при модуляции добротности (длины резонатора) с частотой, близкой к частоте межмодовых биений лазера. При синхронизации мод лазер генерирует короткие и мощные импульсы, следующие друг за другом с частотой внеш. модуляции.  [c.185]

П, э. играет большую роль в квантовой электронике в нелинейной оптике ячейки с просветляющимся веществом используются для т, н. пассивной модуляции добротности и синхронизации мод лазеров, формирования коротких импульсов в лазерных усилителях и т. п. П, э. в газовых средах, помещённых в резонатор лазера а. обладающих доплеровски уширенной линией поглощения на частоте генерации, используется для стабилизации частоты и сужения линий генерации. В нели-нейной спектроскопии наблюдение П. а. в неоднородно уширенных линиях поглощения является ордт/i из методов регистрации спектров с высоким разрешением.  [c.151]

Большое соотношение ширины контура усиления Т. л. и частоты межмодовых биений ( 10 ) позволяет достаточно просто осуществлять режим синхронизации мод и получать сверхкороткие импульсы длительностью 10 " — 10 с, ограниченной обратной шириной линии усиления. Так же, как и модуляция добротности, синхронизация мод в т. л. осуществляется как активным, так и пассивным образом, Т, л, может также работать в режиме усилителя  [c.49]

Бнерация сверхкоротких импульсов. Для генерации СКИ в лазерах используют процесс синхронизации продольных мод резонатора лазера. Для синхронизации мод применяются пассивные и активные методы связывания фаз продольных мод лазера. При одинаковой фазе, навязанной всем продольным модам лазера, синфазное сложение амплитуд электрич, полей приводит к генерации СКИ, длительность к-рых ограничена шириной спектра генерации. В неодимовых лазерах, к-рые обычно используют в Ф. с., достигается генерация СКИ длительностью 10" — 10 с при помещении в оптич. резонатор лазера насыщающихся органич. красителей—для пассивной синхронизации мод, а также акустооптич. и эл.-оптич. модуляторов света—для активной синхронизации мод. В методе активной синхронизации мод сфазирование отдельных продольных мод осуществляется с помощью помещаемого внутрь резонатора модулятора для управления потерями резонатора внеш. периодич. сигналом с частотой, равной или кратной частотному интервалу между продольными модами резонатора лазера [3 ].  [c.280]


Метод синхронизации мод позволяет получить генерацию лазерных импульсов сверхкороткой длительности (от нескольких десятков фемтосекунд до нескольких десятков пикосекунд). Синхронизация мод соответствует условию генерации, при котором моды резонатора генерируют с примерно одинаковыми амплитудами и синхронизованными фазами.  [c.305]

Дтр примерно равна обратной ширине линии генерации Avren. Этот результат нетрудно понять, если вспомнить, что временное поведение каждого импульса есть просто фурье-образ его частотного спектра. Отсюда видно, что, поскольку ширина линии генерации AvreH может быть порядка ширины линии усиления Avo, то можно надеяться, что синхронизация мод в твердотельных или полупроводниковых лазерах позволит генерировать очень короткие импульсы (до нескольких пикосекунд). В лазерах на красителе ширина линии усиления в сотни раз превышает эту величину в твердотельных лазерах, что дает возможность получать в этих лазерах и уже действительно были получены значительно более короткие импульсы (до приблизительно 30 фс). В газовых же лазерах ширина линии усиления намного уже (до нескольких гигагерц) и поэтому генерируются относительно длинные импульсы (до 100 пс). А теперь вспомним, что два последовательных импульса разделены временным промежутком тр, определяемым выражением (5.111). Поскольку Ди = = 2nS.v = n /L, где L —длина резонатора, мы имеем xp = 2L , что в точности равно времени полного прохода резонатора. Следовательно, внутри лазерного резонатора генерация будет иметь вид сверхкороткого импульса длительностью Дтр, определяемой выражением (5.112), который распространяется вперед и назад по резонатору. В самом деле, в этом случае пучок на выходе из какого-либо зеркала представляет собой цуг импульсов, причем временной промежуток между двумя последовательными импульсами равен времени полного прохода резонатора. Характерные числовые значения подтверждают такое представление, поскольку пространственная протяженность Дг импульса длительностью, скажем, Дтр = 1 пс равна Дг = СоДт = 0,3 мм, т. е. много меньше типичной длины резонатора лазера.  [c.309]

Прежде чем продолжить рассмотрение, необходимо указать на то, что происходит в случае, когда фазы являются случайными. На рис. 5.40 показано временное поведение квадрата амплитуды поля A t) 2 для случая семи мод с межмодовым расстоянием Д(1), имеющих одинаковые амплитуды Eq и случайные значения фаз. Мы видим, что выходной пучок, в отличие от рассмотренного выше случая с синхронизацией мод, представляет собой теперь нерегулярную последовательность световых импульсов. Однако, как следует из общих свойств рядов Фурье, длительность каждого светового импульса по-прежнему равна Дтр, или примерно l/AvreH (AvreH —полная ширина линии генерации), среднее время между импульсами в точности равно Дтр, а частота повторения импульсов Тр = 2л/Дй). Заметим, что, поскольку время отклика обычного электронного приемника, как правило, значительно превышает Дтр, на выходе многомодового  [c.309]

Рассмотренные два примера синхронизации мод позволяют сделать вывод о том, что при выполнении условия синхронизации мод (5.106) амплитуда поля оказывается пропорциональной фурье-образу спектральной амплитуды. Длительность импульса Дтр связана с шириной спектральной интенсивности Avren соотношением Дхр = fe/AVren, где k — числовой множитель (порядка единицы), который зависит от конкретного вида распределения спектральной интенсивности. Такой импульс называют импульсом, длительность которого определяется обратной шириной спектра  [c.311]

Следует заметить, что требование расположения модулятора у зеркала резонатора не обязательно и используется автором для упрощения изложения. В действительности (предполагая модулятор тонким) устойчивой синхронизации мод можно добиться, располагая ячейку на расстоянии от зеркала, кратной длине резонатора L. При этом частота следования импульсов, если ячейка расположена на расстоянии L/2, L/3, и т. д. от одного из зеркал, будет равна соответственно jL, Z jlL и т. д. Это нетрудно понять, используя временное представление н полагая, что в каждый момент времени, когда мы имеем мнии.мум потерь, в модуляторе встречаются два распространяющихся в разные стороны импульса. Разумеется потребуется изменение рабочей частоты активного модулятора, насыщающийся же поглотитель настраивается сам. Аналогичным образом рассчитывается и лазер с синхронной накачкой или насыщающимся усилением (см. обсуждение в связи с рис. 6,34). Наконец, заметим, что для лазера бегущей волны (см., например, рис. 5.11) положение поглотителя несущественно. — Прим. перев.  [c.323]

ЭТОМ разгрузка резонатора происходит тогда, когда результирующий звуковой импульс взаимодействует с пучком в резонаторе. Следовательно, этот импульс должен быть синхронизован с циркулирующим в режиме синхронизации мод импульсом таким образом, чтобы оба импульса встречались в модуляторе. Заметим, что высокая несущая частота служит двойной цели, а именно позволяет осуществить амплитудную модуляцию короткими (тр = 10 не) импульсами и обеспечивает больщий угол дифракции 0d (0d = ХДа линейно увеличивается с ростом несущей частоты), 2) Пучок фокусируется в очень небольщое пятно в оптическом блоке модулятора. На самом деле продолжительность вывода излучения из резонатора определяется не только длительностью электрического импульса, но и временем прохождения звукового импульса через лазерный пучок. Выбрав, например, диаметр пятна d = 50 мкм и скорость звука v = = 3,76-10 см/с (скорость сдвиговых волн в кварце), получаем t = d/v = 3,3 НС. 3) Циркулирующий и дифрагированный импульсы заставляют взаимодействовать дважды со звуковым импульсом в модуляторе. Это обеспечивается зеркалом Мз лазера, которое также фокусирует и рассеянный пучок обратно в модулятор. Такой способ позволяет достичь высокой эффективности дифракции 70 %).  [c.326]

Рубиновые лазеры обычно работают в импульсном режиме. При этом для накачки используется импульсная ксеноновая лампа среднего давления ( 500 мм рт. ст,) в конфигурации, приведенной на рис. 3.1, б или (чаще) в конфигурации рис, 3.1, а. Диаметр стержня обычно составляет 5—10 мм, а длина стержня 5—20 см. Рубиновый лазер имеет следующие выходные параметры 1) в режиме модуляции добротности его мощность в одиночном гигантском импульсе длительностью 10—20 не составляет 10—50 МВт 2) в режиме синхронизации мод пиковая мощность в импульсе длительностью 10 пс равна нескольким гигаваттам. При накачке ртутными лампами высокого давления лазеры на рубине могут работать также и в непрерывном режиме.  [c.334]


Смотреть страницы где упоминается термин Импульс синхронизация мод : [c.957]    [c.32]    [c.89]    [c.321]    [c.527]    [c.280]    [c.310]    [c.316]    [c.317]    [c.319]    [c.320]    [c.320]    [c.321]    [c.323]    [c.325]    [c.325]    [c.334]   
Принципы лазеров (1990) -- [ c.307 , c.315 , c.325 , c.540 ]



ПОИСК



227 — Синхронизация

Конечная длительность импульса и неустойчивость синхронизации

Критерии эффективной синхронизации мод вероятность срыва процесса развития импульсов и образования двойных импульсов

Моды излучения. Резонатор с прямоугольными плоскими зеркалами Аксиальные (продольные) моды. Ширина линий излучения. Боковые моды. Цилиндрический резонатор со сферическими зеркалами. Синхронизация мод. Продолжительность импульса. Осуществление синхронизации мод. Лазерные спеклы Характеристики некоторых лазеров

Нелинейная фильтрация и компрессия импульсов твердотельных лазеров с активной синхронизацией мод и модуляцией добротности

Пассивная синхронизация сталкивающиеся импульсы

Перестраиваемые по частоте пико- и фемтосекундные лазеры Фемтосекундные импульсы в лазерах на красителях с пассивной синхронизацией мод

Принцип генерации ультракоротких импульсов синхронизация Методы сиихроиизации мод

Свойства пикосекундных импульсов, генерируемых твердотельными лазерами с пассивной синхронизацией мод

Синхронизация мод и генерация сверхкоротких импульсов

Синхронизация продольных мод (генерация сверхкоротких световых импульсов)

Эффекты когерентного перекрытия сталкивающихся импульсов при пассивной синхронизации мод



© 2025 Mash-xxl.info Реклама на сайте