Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дисперсно-упрочненные хрома

Дисперсно-упрочненные композиционные материалы на основе хрома.  [c.348]

Композиционные материалы ВДУ-1, ВДУ-2 и ВДУ-3 при умеренных температурах по прочности уступают жаропрочным никелевым сплавам. При комнатной температуре временное сопротивление разрыву сплавов ВДУ-1 и ВДУ-2 составляет 540—570 и 450—500 МПа соответственно, а у сплава ВДУ-3 — 800—850 МПа. Большая прочность сплава ВДУ-3 по сравнению с остальными двумя связана с легированием матрицы хромом. При высоких температурах по жаропрочности дисперсно-упрочненные сплавы превосходят стареющие деформируемые никелевые сплавы (табл. 10.4).  [c.256]


В последние годы опубликованы обзоры по сплавам на основе хрома, достаточно полно отразившие имеющиеся в литературе данные и по дисперсно-упрочненным тугоплавкими соединениями сплавам на основе хрома [2, 26, 30, 31].  [c.282]

Известно, что эффект дисперсионного упрочнения при прочих равных условиях зависит от объемной концентрации фазы и от ее дисперсности. Ширина области -твердого раствора на диаграммах с ограниченной растворимостью компонентов определяет возможное максимальное количество выделяющейся при старении избыточной фазы. Этот факт, по-видимому, объясняет отмеченное [26] менее эффективное упрочнение хрома частицами Zr , чем Ti , Nb и ТаС. Несмотря на более высокую термодинамическую прочность Zr , по-видимому, из-за очень узкой области а (Сг)-твердого раствора в системе Сг—Zr (известно, что растворимость циркония в хроме очень незначительна [15] и общее количество дисперсной фазы Zr , выделяющейся при старении, значительно меньше, чем в системах Сг—Nb (Ta , Ti )), Zr упрочняет слабее.  [c.283]

При испытании на ползучесть (табл. 3.10) лучшие результаты были получены при легировании молибдена хромом. При упрочнении, молибдена дисперсными окислами максимальное сопротивление ползучести было отмечено для сплавов с двуокисью титана или циркония.  [c.64]

Упрочнение за счет добавок никеля, хрома и марганца используют для сталей, работающих как при низкой, так и при высокой температуре. Это упрочнение усиливается при добавлении таких элементов, как молибден, ванадий, ниобий и вольфрам, которые имеют большое сродство к углероду. (Ванадий и ниобий имеют также большое сродство к азоту.) Эти добавки не только замедляют скорость превращения и уменьшают содержание углерода в эвтектоиде, но и, соединяясь с углеродом, образуют мелкодисперсные карбиды, которые более стабильны и менее склонны к коагуляции, чем частицы цементита в бейните или перлите. Эти дисперсные карбиды существенно увеличивают сопротивление матрицы деформации как при низкой, так и при высокой температуре и могут быть использованы при создании сталей с высокими пределами текучести и ползучести.  [c.50]

Данные по фазовому анализу хромоникелевых сталей типа 18-8, 20-20, 25-20 с разным содержанием углерода в зависимости от температуры и длительности отпуска указывают, что максимальное количество хрома, связанного в карбиды, выделяется при 800—900° С и максимальное упрочнение при воздействии отпуска относится к 650—700° С. Упрочнение, связанное с выделением карбидов, зависит от степени дисперсности оно максимальное, когда карбиды имеют высокую степень дисперсности (порядка 10 см) и видны только при больших увеличениях в электронном микроскопе. Максимальное число карбидов в стали типа 18-8 выделяется при 800 С, а максимальная потеря коррозионной стойкости относится к 600° С.  [c.312]


В качестве матрицы в этих материалах используют никель и его сплавы с хромом ( 20 %) со структурой твердых растворов. Сплавы с хромоникелевой матрицей обладают более высокой жаростойкостью. Упрочни-телями служат частицы оксидов тория, гафния и др. Временное сопротивление в зависимости от объемного содержания упрочняющей фазы изменяется по кривой с максимумом. Наибольшее упрочнение достигается при 3,5 - 4 % НЮ2 (<Тв = 750. .. 850 МПа (т / рд) = 9. .. 10 км й = 8. .. 12 %). Легирование никелевой матрицы W, Ti, А1, обладающими переменной растворимостью в никеле, дополнительно упрочняет материалы в результате дисперсионного твердения матрицы, происходящего в процессе охлаждения с температур спекания. Методы получения этих материалов довольно сложны. Они сводятся к смешиванию порошков металлического хрома и легирующих элементов с заранее приготовленным (методом химического осаждения) порошком никеля, содержащим дисперсный оксид гафния или другого элемента. После холодного прессования смеси порошков проводят горячую экструзию брикетов.  [c.443]

Прочность при высоких температурах сплавов на основе кобальта зависит от упрочнения твердого раствора и часто от дисперсности стабильных карбидов. Кроме никеля и хрома, наиболее часто используемыми легирующими элементами в этих сплавах являются молибден, ниобий, тантал и особенно вольфрам. Добавки бора применены для придания сплаву повышенных механических свойств при высоких температурах. В некоторых сплавах используют также титан. В табл. 42 перечислены номинальные составы и приведены данные о длительной прочности типичных сплавов на основе кобальта, использующихся в настоящее время.  [c.184]

Дисперсно-упрочненный Huxpoju используют в производстве горячих газопроводов, теплозащитных панелей, высокотемпературных крепежных деталей. Дисперсно-упрочненные композиты на основе хрома перспективны для изготовления рабочих и сопловых лопаток газотурбинных двигателей, нагревателей ДJ я электропечей. Прочность печных нагревателей из хро ювых ДКМ значительно превышает прочность си-литовых нагревателей.  [c.123]

Дисперсно-упрочненные композиционные материалы на основе ко-оальта. ДКМ на основе кобальта и его павов с хромом, молибденом и вольфрамом упрочняются оксидом тория  [c.347]

При изготовлении дисперсно-упрочненных материалов типа спеченных алюминиевых порошков (САП) путем спекания совместимость алюминия с дисперсным порошком окиси алюминия в определенной степени определяется когерентностью решетки металла и его окиси, однако при таком способе получения жаропрочных материалов существует большая свобода выбора разнообразных упрочняющих фаз для самых различных материалов. Например, дисперсная двуокись тория в равной мере успешно используется для упрочнения меди, кобальта, никеля и их сплавов, циркония, платины, хрома, молибдена, вольфрама и других металлов. Малые добавки дисперсных окислов А 2О3, YgOg, MgO, BeO, ZrO , НЮ и других очень эффективно упрочняют медь, никель и его сплавы титан, цирконий, ниобий, ванадий, хром, уран и другие металлы.  [c.120]

В работах [328, 330, 332, 339, 3551 было показано, что описание-кривой нагружения ОЦК-поликристаллов уравнением параболического типа (3.57) значительно расширяет возможности экспериментального изучения процесса деформационного упрочнения. Обобщением-результатов этих работ, а также ряда литературных данных [9, 289,, 290] является общая схема деформационного упрочнения поликристал-лических ОЦК-металлов и сплавов [47, 48] (рис. 3.33), которая отражает сложный многостадийный характер процесса, обусловленный поэтапной перестройкой дислокационной структуры при деформации. Считается, что перестройка структуры (от относительно однородного распределения дислокаций через сплетения и клубки к дислокационной ячеистой структуре) вызывает соответствующее изменение внутренних напряжений [2961, следовательно, и параметров процесса деформационного упрочнения. Данная схема основывается на анализе и обобщении результатов механических испытаний и структурных исследований, проведенных на десяти сплавах ОЦК-металлов [47, 481, которые различались по величине модуля упругости, энергии дефекта упаковки, наличию дисперсных упрочняющих фаз, уровню примесных элементов и размеру зерна (в пределах одного сплава). В частности, были исследованы при испытаниях на растяжение в интервале температур 0,08—0,5Гпл однофазные и дисперсноупрочненные сплавы-на основе железа (армко, сталь 45, Ре + 3,2 % 81), хрома, молибдена (МЧВП с размером зерна 100 и 40 мкм, Мо Н- 4,5 % (об.) Т1М, ЦМ-10-и ванадия (технически чистый ванадий), а также сплавы ванадия и ниобия с нитридами соответственно титана и циркония [95].  [c.153]


Изготовление изделий методом холодной штамповки требует повышенной пластичности стали, которая обеспечивается при наличии в готовой ленте однородной мелкозернистой структуры ферритной матрицы с включениями дисперсных карбидов r,3Q. Такая структура получается после отжига при 850 °С рис. 1.011). Сталь 12X17 не склонна к интенсивному росту зерна при высокотемпературном нагреве (например, при сварке) из-за наличия двухфазной (у + б) структуры. Заметное упрочнение и полное охрупчивание (рис. 1.8) обусловлены образованием мартенсита при охлаждении. Повторный отжиг при 700—850 °С восстанавливает прочность и относительное удлинение и обеспечивает максимальную стойкость сварных соединений в HNO (происходит выравнивание концентрации хрома в приграничных зонах), в то время как более низкие температуры (450—600 °С) отпуска увеличивают скорость коррозии (рис. 1.9).  [c.17]

Чрезмерное легирование молибденом и ванадием нерационально, так как не дает заметного повышения свойств стали. При комплексном легировании высокопрочной стали хромом, молибденом и ванадием существенный пик вторичной твердости достигается примерно при содержании в стали 5 % Сг 1-2 % Мо и 0,5 % V. В этом случае эффект упрочнения обусловлен выделением дисперсных карбидов Мб7Сз, МегзСе (на базе хрома), МегС (молибдена) и МеС (ванадия). Наибольшая роль в упрочнении принадлежит карбидам МооС и V .  [c.365]

Хром как легируюпщй элемент не вызывает старение мартенсита Fe—Ni-сталей. Однако его присутствие (более 6-8 %) в МСС на основе Fe—Ni приводит к дополнительному упрочнению при нагреве, что связано с образованием дисперсных зон, обогащенных хромом.  [c.368]

Исследования стали 15X28 показали, что ее эрозионная стойкость снижается с увеличением размера ферритного зерна (рис. 114). При этом уменьшается и твердость стали. Очевидно, в пределах одной структуры твердость может характеризовать эрозионную стойкость стали, так как с увеличением твердости стали возрастает ее сопротивление микроударному разрушению. Измельчение ферритной структуры хромистых сталей приводит к упрочнению границ зерен. В этом случае возрастает дисперсность карбидных выделений и их роль в упрочнении границ зерен увеличивается. Поэтому при наличии в стали мелкозернистой структуры феррит разрушается не только по границам, но и внутри зерен. Ферритные стали разрушаются при испытании сравнительно равномерно, без образования больших раковин, что свидетельствует о наличии однофазной структуры. Процесс гидроэрозии протекает быстро вследствие недостаточной упрочняе-мости хромистого феррита в процессе микроударного воздействия. Образцы стали Х28 при испытаниях подверглись значительному изнашиванию, так как структура этой стали отличалась крупнозернистым строением и наличием сфероидизированных карбидов хрома.  [c.199]

В более тугоплавких железе, кобальте, никеле и их сплавах наряду с интерметаллидами в качестве упрочняющих фаз широко используются карбиды и нитриды, но не окислы, поскольку кислород в этих металлах почти нерастворим. В сталях упрочнение достигается прежде всего благодаря выделению цементита (перлитное, бейнитное и мартенситное превращения), а также с помощью специальных карбидов хрома, молибдена, вольфрама, а при старении — с использованием дисперсных карбидов и нитридов ванадия. Карбиды титана, циркония, гафния и в значительной степени ниобия и тантала уже настолько устойчивы, что в сталях, никелевых и кобальтовых сплавах почти не растворяются и в процессах старения не участвуют. Однако они полностью диссоциируют в расплавах и вьщеляются при кристаллизации, так что могут быть использованы для повьипения износостойкости сталей и никелевых сплавов, а при эвтектическом содержании — для жаропрочных однонаправленно кристаллизованных сплавов.  [c.121]

Для сравнения титановых сплавов С. Г. Глазунов предложил принять за основу тип структуры, а не. технологические признаки [42, с. 13]. Все промышленные титановые сплавы по типу структуры являются твердыми растворами на основе одной из аллотропических модификаций титана. Попытки исследователей создать промышленные титановые сплавы с металлидным типом упрочнения были безуспешны (исключение составляет только опытный бинарный сплав Т1 —Си). Встречающиеся в титановых сплавах металлиды (например, химическое соединение титана с хромом, карбид и гидрид титана и др.) вредно воздействуют на механические и технологические свойства титановых сплавов. В некоторых случаях можно предполагать, что в промышленных титановых сплавах существуют полезные металлидные добавки. Так, небольшие добавки кремния (0,1—0,2%) сильно влияют на жаропрочность титановых сплавов, содержащих молибден (ВТЗ-1, ВТ8, ВТ9), что можно объяснить образованием дисперсных выделений очень устойчивой и тугоплавкой фазы — дисилицида молибдена.  [c.21]

Чем мельче частицы карбидов, тем большее упрочнение они вы зывают. Степень дисперсности карбидов при формировании перлита повышается по мере переохлаждения аустенита и зависит от его устойчивости. Все легирующие элементы повышают устойчивость переохлажденного аустерита, за исключением кобальта. Однако повышение устойчивости аустенита различно для различных легирующих элементов. Наиболее энергично действуют молибден, марганец, хром, никель. По влиянию на устойчивость переохлажденного аустенита элементы можно расположить в следующий убывающий ряд  [c.65]

Более эффективным является комплексное легирование высокопрочной стали хромом, молибденом, ниобием и ванадием, при котором максимум вторичного твердения достигается при Сг = 5 %, Мо = 1...2 %, V = 0,5 %. В этом случае эффект упрочнения обусловлен вьщелением дисперсных частиц карбидов М7С3, МгзС (на основе хрома), М2С (на основе молибдена) и МС (на основе ванадия). Роль этих основных легирующих элементов в упрочнении сталей состоит в следующем повышении склонности к образованию карбидов (Сг <  [c.280]


Из двойных систем наиболее перспективна система Ni —51. На выбранных оптимальных режимах сваривали также разнородные жаропрочные сплавы. Прочность стыковых соединений находилась на уровне прочности более слабого сплава, В работе [13] для сварки сплава ХН65ВМТЮ (ЭИ893) использовали хромо-никель-палладиевый сплав. Исследования проведены на сварных соединениях цилиндрических заготовок размером 0 22 X 65 мм, сваренных прессовой сваркой-пайкой по технологии, разработанной в ИЭС им. Патона под руководством Л. Г. Пузрнна. Свойства сварных соединений в состоянии одинарной стабилизации после сварки 1073 К (12 ч) имели весьма низкие значения, особенно пластичность. Применение после сварки диффузионного отжига по режиму многоступенчатого старения 1273 К (4 ч)—> 1173 К (8 ч)—> 1123 К (15 ч) позволило заметно улучшить свойства сварных соединений, а при 1023 К они были на уровне норм механических свойств основного металла. Повышение свойств сварных соединений после диффузионного отжига обусловлено рассасыванием материала промежуточной прослойки и упрочнением ее дисперсными фазами за счет основного металла. Одним из важнейших показателей жаропрочности сварных соединений никелевых сплавов является предел длительной прочности, т. е. то мак-  [c.181]


Смотреть страницы где упоминается термин Дисперсно-упрочненные хрома : [c.188]    [c.121]    [c.43]    [c.45]    [c.226]    [c.134]    [c.286]    [c.226]    [c.187]    [c.47]    [c.311]   
Конструкционные материалы (1990) -- [ c.348 ]



ПОИСК



Дисперсная

О упрочняющие

Хрома

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте