Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атмосфера ионная

Как показывает это выражение, одним из признаков исчезновения ионной атмосферы ионита может служить потеря им своего заряда (Рз—ср = О в результате контакта ионита с раствором электролита, содержащим одноименные с ионной атмосферой ионы в определенной концентрации Сп-  [c.477]

Мерой упругости диссоциации ионита может служить парциальное осмотическое давление одноименных с ионной атмосферой ионов в растворе электролита, имеющем концентрацию, удовлетворяющую условию исчезновения ионной атмосферы. Упругость диссоциации ионита характеризует одно из важнейших его свойств — ту силу, с 1 оторой он преодолев вает торможение обратимого процесса ионного обмена, вызываемое обратной реакцией и зависящее от концентрации в растворе ионов, конкурирующих за место на поверхности ионита.  [c.477]


Асботекстолит, механические свойства 115 Асимптоты 19 Асфальт 266 Атмосфера ионная 78 Атмосферная кор розия 568,  [c.719]

ПРОВОДИМОСТЬ АТМОСФЕРЫ электрическая — обусловлена в основном наличием в атмосфере ионов и равна Я = е где е —  [c.207]

При соприкосновении с атмосферой ионы железа взаимодействуют с кислородом, образуя окислы железа  [c.108]

Воздействие ультразвука на электрохимические процессы, включающие и процессы электрохимической коррозии металлов, складывается из целого ряда эффектов 1) перемешивания, которое устраняет концентрационную поляризацию 2) активационного воздействия на реагирующие частицы и внедрения их в двойной электрический слой (изменение состояния ионных атмосфер и гидратации частиц, преимущественная ориентация ионов и молекул) 3) влияния на переход электронов (за счет возбуждения  [c.368]

Водородный электрод для измерения потенциала можно получить, погружая пластинку платинированной платины в раствор, насыщенный водородом при давлении 1 ат (рис. 3.2), или, что более удобно, измеряют потенциал с помощью стеклянного электрода, который также обратим по отношению к водородным ионам. Заметим, что потенциал электрода равен нулю, если и активность водородных ионов, и давление газообразного водорода (в атмосферах) равны единице. Это и есть стандартный водородный потенциал. Таким образом, потенциал полуэлемента для любого электрода равен э. д. с. элемента, где в качестве второго электрода использован стандартный водородный электрод. Потенциал полу-элемента для любого электрода, определенный таким образом, называется потенциалом по нормальному стандартному) водородному электроду или по водородной шкале и обозначается или н. в. а-  [c.34]

Электрохимическая природа процесса окисления при повышенных температурах дает основание предполагать, что контакт различных металлов влияет на скорость процесса. Такое явление описано [29]. Например, реакция серебра с газообразным иодом при 174 °С ускоряется при контакте серебра с танталом, платиной или графитом. Скорость образования на серебре пленки Agl (который обладает в основном ионной проводимостью) определяется скоростью перемещения электронов сквозь эту пленку. При контакте серебра с танталом ионы Ag+ диффундируют по поверхности тантала, который снабжает их электронами, ускоряющими превращение серебра в Agl. Поэтому пленка Agl распространяется и по поверхности тантала (рис. 10.5). Было обнаружено также [30], что на серебре, покрытом пористым слоем электро-осажденного золота, в атмосфере паров серы при 60 °С образуется очень прочно связанная с поверхностью пленка Ag S.  [c.199]


Другим примером может служить поведение никеля, погруженного в расплав буры на глубину 3 мм при температуре 780 °С и давлении Oj 0,1 МПа (рис. 10.6). В этих условиях скорость окисления низка вследствие ограниченного поступления кислорода из газовой фазы. При контакте никеля с платиновой или серебряной сеткой, выступающей над поверхностью расплава, коррозия никеля сильно ускоряется (в 35—175 раз при продолжительности опыта 14). При этом никель корродирует быстрее, чем в атмосфере чистого кислорода при той же температуре, так как здесь не образуется защитная окалина NiO. Вместо этого ионы Ni + растворяются в буре, а платина работает как кислородный электрод. В этой ситуации разность потенциалов между Pt и Ni составляет 0,7 В. Добавление в расплав буры 1 % FeO еще более ускоряет процесс окисления (возможно, ионы Fe + у поверхности электролита окисляются кислородом до Ре +, а ионы Ре + снова восстанавливаются либо на катоде, либо в процессе работы локальных элементов на никелевом аноде).  [c.199]

Схематическое изображение процессов, происходящих при нитевидной коррозии, представлено на рис. 15.2. Анализами показано [14], что головка нити пополняется сравнительно концентрированными растворами солей двухвалентного железа. Поэтому именно на этом участке нити имеется тенденция к абсорбции воды из атмосферы. Кислород также диффундирует через пленку, и поэтому на границе раздела между головкой и основной частью нити, а также по периметру головки достигается (относительно поверхности металла) более высокая концентрация кислорода, чем в центре головки. Образуется элемент дифференциальной аэрации, в котором катодами (где происходит накопление ионов 0Н ) являются все участки соприкосновения пленки с металлом,  [c.256]

Рис. 45.6. Температура Т и концентрация электронов Ne, ионов Л ион И нейтронных атомов Nar в атмосфере Солнца. Высота отсчитывается от уровня единичной оптической толщины на длине олны 0,5 мкм [5] Рис. 45.6. Температура Т и <a href="/info/18045">концентрация электронов</a> Ne, ионов Л ион И нейтронных атомов Nar в атмосфере Солнца. Высота отсчитывается от уровня единичной <a href="/info/147686">оптической толщины</a> на длине олны 0,5 мкм [5]
Атомы электрически нейтральны, так как отрицательные заряды электронов, вращающихся вокруг ядра, нейтрализованы его положительным зарядом. В металлах при достаточном сближении атомов возникает возможность отрыва валентного электрона одного атома положительно заряженным ядром другого, у этого — следующим и т. д. Таким образом, часть валентных электронов начинает перемещаться вокруг ядер всех взаимодействующих атомов. Эти электроны называются свободными, поскольку не связаны с определенными атомами. Металл можно представить себе как постройку из нейтральных атомов и ионов, находящихся в атмосфере электронного газа, который как бы стягивает ионы. Связь между атомами, осуществляемая электростатическими силами в результате взаимодействия положительных ионов и электронного газа, называется металлической. Поскольку эти атомы по своей природе одинаковы, то расположиться они должны на таких расстояниях друг от друга и в таких точках пространства, где действующие на них силы притяжения и отталкивания были бы равны. В результате происходит закономерное расположение атомов, наблюдаемое в кристаллической решетке.  [c.113]

Атмосферы нефтегазоконденсатных комплексов отличаются высоким содержанием газов, солей, агрессивных компонентов, и по характеру микроклиматических условий они относятся в основном к жестким и очень жестким условиям. Разрушению под действием атмосферной коррозии подвергаются металлические нефтепромысловые сооружения и коммуникации, промысловые и магистральные нефтегазопроводы, сеть водоводов и резервуаров, морские нефтепромысловые сооружения, эстакады, кустовые площадки, индивидуальные основания, оборудование нефтегазоперерабатывающих заводов и др. Известно, что коррозия металлов в атмосферных условиях протекает под слоем влаги и определяется скоростью адсорбции или генерации на поверхности ионизированных частиц, способных вытеснять хемосорбированный кислород из поверхностного слоя металла. Для большинства конструкционных материалов наибольшее ускорение коррозионных процессов определяется наличием в атмосфере примесей сернистого газа, сероводорода, ионов хлора, а также загрязненностью воздуха пылью и аэрозолями, которые становятся центрами капиллярной конденсации влаги.  [c.50]


Спутник был оборудован радиотелеметрической аппаратурой, радиоаппаратурой для измерения координат траектории полета и аппаратурой для терморегулирования атмосферы во внутреннем пространстве корпуса. Кроме того, в нем помещались приборы для измерения интенсивности первичного космического излучения, регистрации ядер тяжелых элементов в космических лучах и регистрации ударов микрометеоров, для измерения давления, ионного состава атмосферы, концентрации положительных ионов, измерения напряженности электростатического и магнитного полей и интенсивности корпускулярного излучения Солнца. Многоканальная радиотелеметрическая система была снабжена запоминающим устройством, позволившим записывать данные научных наблюдений на всей траектории спутника и передавать их по команде с Земли только на участках, проходящих над территорией Советского Союза. Для энергопитания аппаратуры и приборов имелись электрохимические батареи и полупроводниковая солнечная батарея, хорошо зарекомендовавшая себя в эксплуатации.  [c.426]

В случае с элементом Даниеля коррозия происходит тогда, когда металл устойчив к действию рассматриваемого раствора, т. е. акцептор электронов (окислитель) должен находиться в растворе с более высоким окислительно-восстановительным потенциалом, чем система М +/М. Ионы Си + действуют в элементе Даниеля как катодные реагенты, что на практике встречается редко (некоторые виды коррозии медных сплавов представляют исключение). Наиболее распространенные катодные реагенты в естественной среде — это гидратированный протон Н3О+ (или молекула воды) и растворенный кислород, который постоянно присутствует там, где водная среда находится в контакте с атмосферой.  [c.28]

Под влиянием разных окислителей (кислорода воздуха, озона солей трехвалентного железа) и солнечной радиации иод, содержащийся в морской воде, особенно в ее верхних слоях, может переходить из ионного состояния в молекулярное и поступать в атмосферу  [c.20]

Ионы диффузного слоя, обладающие повышенным запасом кинетической энергии, могут вырываться из ионной атмосферы и переходить в раствор, из которого в свою очередь в ионную атмосферу могут поступать ионы того же знака заряда в статистически эквивалентных количествах (сохранение принципа электронейтральности). Таким образом, в процессе адсорбции ионов можно различить три составляющих момента 1) возникновение заряда твердой фазы в результате появления на ней потенциалобразующих ионов 2) образование ионной атмосферы (из противоположно заряженных ионов) вокруг твердой фазы 3) замена ионов, образующих ионную атмосферу, ионами, находящимися в растворе (ионами того же знака заряда).  [c.168]

В разное время проведено много работ по окраске поверхностей окал иной но ни в одном случае ле удалось улучшить защитное действие лакокрасочных покрытий. То же относится к жраске по ржавчине. Было показано что состояние покрытий, полученных при нанесении лакокрасочных материалов на ржавчину, зависит от загрязненности атмосферы ионами СГ и ЗО ,. Наличие в ржавчине водорастворимых солей увеличивает электропроводность влаги, проникающей сквозь лакокрасочное покрытие, и интенсифицирует коррозионные процессы.  [c.55]

Металлы и их сплавы являются наиболее важными современными конструкционными материалами. Всюду, где эксплуатируются металлические конструкции, есть вещества, которые, взаимодействуя с металлами, постепенно их разрушают ржавление металлических конструкций (железных кровель зданий, стальных мостов, станков и оборудования цехов) в атмосфере ржавление наружной металлической обшивки судов в речной и морской воде разрушение металлических баков и аппаратов растворами кислот, солей и щелочей на химических и других заводах ржавление стальных трубопроводов в земле окисление металлов при их нагревании и т. п. У большинства металлов в условиях их эксплуатации более устойчивым является окисленное (ионное) состояние, в которое они переходят в результате коррозии. Слово коррозия происходит от латинского orrodere , что означает разъедать .  [c.8]

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа  [c.381]

Значительное сокращение (в 2—3 раза) общего времени процесса достигается при азотировании в тлеющем разряде (ионное азотирование), которое проводят в разреженной азотсодержащей атмосфере (NH., или Na), при подключении обрабатываемых деталей к отрицательному элекгроду — катоду Анодом является контейнер установки. Между катодом (деталью) и анодом возбуждается тлеющий разряд, и положительные ионы газа, бомбардируя lumep х пость катода, нагревают ее до температуры насыщения. Процесс ионного азотирования реализуется в две стадии первая—(.чнсгка поверхности катодным распылением вторая — собственно насыщение.  [c.243]

При комнатной или повышенной температурах в присутствии окисляющего газа (например, кислорода, соединений серы или галогенов) металл может корродировать и без жидкого электролита. Подобную коррозию иногда называют сг/хой , в отличие от мокрой коррозии, когда металл погружен в воду или грунт. При сухой коррозии на поверхности металла формируется твердая пленка продуктов реакции, или окалина (окалиной называется толстая пленка), .ерез которую металл или среда (или оба одновременно) должны диффундировать для продолжения реакции. Показано, что через твердую пленку оксидов, сульфидов или гало-генидов обычно диффундируют ионы, а не атомы следовательно, продукт реакции можно считать электролитом. Медь, окисляющаяся кислородом воздуха, и серебро, тускнеющее в загрязненной атмосфере, образуют соответственно ujO и AgjS, которые являются твердыми электролитами. Мигрирующие ионы не гидратированы и диффундируют одновременно с электронами, но разными путями.  [c.188]


Механизм КРН латуней был предметом многих исследований. Сплавы высокой чистоты и монокристаллы а-латуни также растрескиваются под напряжением в атмосфере NH3 [27]. В под-тверждение электрохимического механизма показано, что в растворах NH4OH потенциалы границ зерен поликристаллической латуни имеют более отрицательные значения, чем сами зерна. В растворах Fe lg, где коррозионное растрескивание не происходит, не наблюдается и подобного распределения потенциала [28]. Согласно другой точке зрения, на латуни образуется хрупкая оксидная пленка, которая под напряжением постоянно растрескивается, а обнажившийся подлежащий металл подвергается дальнейшему окислению [29, 30]. Возможно также, что структурные дефекты в области границ зерен напряженных медных сплавов способствуют адсорбции комплексов ионов меди с последующим ослаблением металлических связей (растрескивание под действием адсорбции). В соответствии с этим предположением, ионы Вг и С1 действуют как ингибиторы, вытесняя с поверхности комплекс металла (конкурирующая адсорбция).  [c.338]

При одновременном легировании никеля молибденом и хромом получается сплав, стойкий в окислительных средах, благодаря присутствию хрома, и в восстановительных благодаря молибдену. Один из подобных сплавов, содержащий также несколько процентов железа и вольфрама (хастеллой С) устойчив против питтинговой и щелевой коррозии в морской воде (испытания в течение Ю лет) и не тускнеет в морской атмосфере. Однако сплавы такого типа, хотя и обладают повышенной стойкостью к иону С1 , в соляной кислоте корродируют быстрее, чем бесхромистые никелево-молибденовые сплавы.  [c.362]

Результаты упомянутых исследований показывают, что окисление протекает за счет диффузии ионов кислорода через поверхность раздела металл—оксид (решетку с анионными дефектами). На основании этого было сделано предположение, что трехвалентные ионы азота, присутствующие в решетке ZrOj, увеличивают концентрацию анионных дефектов и ускоряют, благодаря этому, движение ионов кислорода. Однако при таком механизме окисление непременно ускорялось бы в атмосфере кислорода, а это не так. Толкование этих процессов осложняется к тому же  [c.380]

Ионизирующие компоненты — соединения, содержащие ионы щелочных металлов ЫэгСОз, К2СО3 (поташ). Пары этих соединений снижают сопротивление дугового промежутка и делают дуговой разряд устойчивым. Также хорошо ионизируют атмосферу дугового разряда пары кальция и бария.  [c.390]

Ионы в атмосфере. В результате ионизации газов, входящих в состав атмосферы, образуются первичные (молекулярные) ионы и устойчивые комплексы из 1 0— 15 молекул (легкие ионы). Путем присоединения легких ионов к частицам аэрозоля образуются более крупные — ионы тяжелые и ультратяжелые. Обнаруживаются также средние или промежуточные ионы (табл. 44.39. 44.40), природа которых не вполне ясна.  [c.1195]

Частицы примесей природной воды при столкновении друг с другом или с частицами контактной массы обычно отталкивают- а ся, так как они обладают определенной агрегативной устойчивостью. Агрегативная устойчивость большинства примесей воды (глинистые частицы, гуминовые вещества и т. п.) обусловлена электростатическими силами отталкивания, т. е. наличием электрического заряда, определяемыми присутствием вокруг частиц двойного электрического слоя, состоящего из противоположно заряженных ионов непосредственно на поверхности частиц отрицательно заряженные ионы, а вокруг атмосфера противоионов из ионов водорода, натрия или калия.  [c.219]

Распространенным методом получения пленок гидрогенизированного аморфного кремния является высокочастотное ионно-плазменное распыление кремния в атмосфере арюнно-водородной плазмы, которое также широко используется в производстве полупроводниковых приборов и микросхем для нанесения пленок других материалов.  [c.16]

Достоинство процесса хроматирования при эксплуатации изделий с покрытиями — это возможность самовосстановления пассивной пленки в мезтах ее механического нарушения. По данным Т.Ф. Ажогина, во влажной атмосфере происходит процесс вторичного хроматирования ионами СГ2О7, имеющимися на поверхности металла. Пассивация, покрытий может происходить химическим, электрохимическим способом, а также при одновременном наложении ультразвукового поля и с использованием электрогидравлического эффекта.  [c.97]

Во многих д.чэлектриках, используемых в электрической изоляции, величина р сильно зависит от их увлажнения. Даже малое количество влаги, поглощенное гигроскопическим образом, может существенно уменьшить его сопротивление. Молекулы воды хорошо диссоциируют на ионы, в воде растворяются частицы примесей, обычно содержащихся в технических диэлектриках солей, остатков ка гализагоров, кислот, щелочей и других трудно устранимых из материала ионогенных веществ. Влага с растворенными ионоген-иыми примесями проникает в поры и микротрещины, впитывается капиллярами, распределяется по границам раздела в многокомпонентном диэлектрике. Количество поглощенной изоляцией влаги. 1ЙВИСИТ от влажности окружающего воздуха и времени выдержки -образца во влажной атмосфере или в воде, если изоляция работает в контакте с водой. Процесс уменьшения Pt, изоляции имеет обратимый характер. При высушивании поглощенная влага удаляется и р,, возрастает. Для предотвращения увлажнения изоляции поверхность гигроскопичных материалов защищается не смачиваемыми водой водостойкими материалами, препятствующими проникновению влаги. Например, пористые электрокерамические материалы покрываются глазурью пористые диэлектрики пропитываются жидкими или твердеющими компонентами, которые плохо увлажняются.  [c.144]

Электропроводность стекол носит в основном ионный характер, однако имеются стекла с преимущественно электронной проводимостью (содержащие окислы ванадия, молибдена и др.). Поверхностная проводимость стекол резко возрастает во влажной атмосфере из-за адсорбции влаги. Поверхностная проводимость повышается, если в стекло вводятся щелочные окислы, и снижается в присутствии таких окислов, как Al.jOg и ZrOj. Значительный интерес для радио-техники представляют слабощелочные, бесщелочные, кварцевые и электровакуумные стекла.  [c.133]

Для регистрации утечек электроотрицательных пробных веществ в атмосферу, в частности утечек элегаза, может быть применен течеискатель, называемый плазменным и реагиру-. ющий на пробные вещества изменением частоты срыва высокочастотного генератора [9. Через стеклянную трубку-натекатель, находящуюся в поле плоского конденсатора, при помощи механического вакуумного насоса прокачивается с определенной скоростью воздух, отбираемый от испытуемой поверхности, так что в трубке поддерживается давление 10. .. 30 Па. Высокочастотный генератор ионизирует газ внутри трубки. Возникает тлеющий разряд, демпфирующий контур и срывающий высокочастотную генерацию. Происходит рекомбинация ионов, повышающая добротность контура. Генератор вновь возбуждается и процесс повторяется с определенной частотой. Появление в трубке электроотрицательного вещества изменяет скорость рекомбинации ионов, частота срывов возрастает пропорционально концентрации примеси.  [c.195]

Методом вращающегося диска изучалась кинетика взаимодействия титана с расплавом стекла в атмосфере аргона (в стекле содержится 5% СиО), Регистрируемой величиной служило изменение электропроводности расплава в ходе химического взаимодействия, фиксируемое через 1, 2, 3, 4 ч. Приведенная на рис. 3 кинетическая кривая характерна для диффузионно-химического типа взаимодействия. Восстановление ионов меди сопровождается образованием купротитанатов в процессе гетеродиффузии, при восстановлении меди отмечается ее диффузия в металлический титан и растворение в расплаве прочих продуктов взаимодействия, электропроводность расплава уменьшается, что может быть связано с уменьшением доли электронной проводимости за счет смещения электронного баланса системы  [c.228]


На основании изучения гетерофазного взаимодействия титана с расплавами стекол системы ЗЮа—А1,0,—В,О,—7пО(СиО) с ПОМОЩЬЮ комплекса электрохимических методов исследования установлено большое влияние состава газовой среды на величину и кинетику установления стационарного потенциала Т1-электрода, электропроводность изученных расплавов. Показано, что доминирующим на первой стадии взаимодействия титана с расплавом стекла-матрицы в нейтральной атмосфере является процесс окисления металла за счет растворенных в расплаве паров воды, дополняемый окислительно-восстановительным взаимодействием с образованием в зоне контакта силицидов титана. Присутствие иона меди в расплаве изменяет характер взаимодействия. Восстановление меди сопровождается образованием купротитанатов вследствии гетеродиффузии в металлический титан и растворением прочих продуктов в расплаве. Методом вращающегося титанового диска изучалась кинетика процесса. Лит. — 9 назв., ил. — 3.  [c.270]

Физические процессы, происходящие в датчике галоидного течеискателя, сложны и полностью не изучены. Эмиссия положительных ионов объясняется обычно присутствием на аноде солей щелочных металлов. Термоионная эмиссия происходит в присутствии кислорода. Для проточного диода датчика, работающего в условиях атмосферного воздуха, необходимое количество кислорода для эмиссии всегда обеспечено. Для улучшения работы в вакуумных проточных диодах необходима непрерывная подача некоторого количества кислорода к диоду. В отечественном течеискателе типа ГТИ-6 в межэлектродное пространство диода вводят кислород путем эжектирования КМпО , разлагающегося от тепла, выделяемого датчиком [171. Это обеспечивает повышение чувствительности течеискания при размещении датчика в вакуумируемом объеме, давление в котором ниже 0,133 Па. Галоидный течеискатель может обнаруживать содержание галоидов в воздухе при концентрации их 10 % [15]. Длительная работа галоидного течеискателя в атмосфере, содержащей большие концентрации галоидов, приводит к потере чувствительности датчика, называемой отравлением . Так, галоидный течеискатель ГТИ-3 отравляется при концентрации галоидных газов в атмосфере 0,01 % [4]. При попадании больших количеств галоидосодержащих газов также наблюдается резкое снижение термоионной эмиссии. Для восстановления эмиссионных свойств прибора необходимо через датчик пропустить кислород или чистый воздух.  [c.70]

Необходимо отметить также, что Ef позволяет судить о возможности протекания реакции, но не дает информации о ее скорости например, в серной кислоте цинк корродирует медленнее железа. В качестве окислителей кроме ионов водорода могут действовать другие компоненты. Это в особенности относится к растворенному кислороду, который деизменно присутствует в водной среде, соприкасающейся с атмосферой. Из табл. 1.2 можно видеть, что растворенный кислород имеет более положительный потенциал, чем ион водорода. Это означает, что благородные металлы Си и Ag не будут корродировать в кислой среде при отсутствии кислорода.  [c.20]


Смотреть страницы где упоминается термин Атмосфера ионная : [c.719]    [c.146]    [c.260]    [c.13]    [c.259]    [c.18]    [c.98]    [c.148]    [c.131]    [c.244]    [c.248]    [c.247]    [c.17]   
Теплотехнический справочник (0) -- [ c.78 ]

Теплотехнический справочник Том 1 (1957) -- [ c.78 ]



ПОИСК



Атмосфера

Иониты

Ионов

По ионная



© 2025 Mash-xxl.info Реклама на сайте