Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магний Твердость

Л агний обладает малой прочностью и пластичностью. Низкая пластичность — результат малого числа преимущественных плоскостей скольжения в гексагональной решетке. Примерные свойства прокатанного и отожженного магния следующие Ов=18 кгс/мм ао,2=10 кгс/мм 6=15%, твердость НВ 30.  [c.596]

Продукты разрушения первичных горных пород, содержащих силикаты магния, например безводный минерал магнезит, имеет следующие физические свойства удельный вес 3,1 - 3,3 г/см, твердость по шкале МООСа составляет 3,5.  [c.210]


Выдержка закаленных образцов при 20 °С приводит к уменьшению пластичности (рис. 85). Никель становится хладноломким, если после закалки его выдержать несколько дней. Хрупкость возникает даже при наличии 1 ч. серы на 1 млн. частей никеля. Это лишний раз указывает на возможность влияния незначительного содержания примесей, а также изменения свойств никеля при 20 °С. Добавка магния (730 ч. на 1 млн. частей никеля) устраняет влияние серы на повышение твердости  [c.158]

Магний уменьшает угар натрия и кальция при переплавках баббита БК2 и увеличивает твердость сплава.  [c.337]

Сплавы меди. В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь Ор бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости (см. рис. 7-12) значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (Ор —до 1350 МПа). Сплав меди о цинком — латунь — обладает достаточно высоким относительным удлинением  [c.200]

Металлы с ГПУ решеткой ведут себя обособленно. Так, магний сохраняет свою твердость постоянной. Цинк, увеличивая ее на одну треть (по сравнению с исходной) в диапазоне от - -2Q до — 0°С, неожиданно повышает ее почти в 1,7 раза в диапазоне от —70 до — 19б°С. В общем твердость цинка в исследованном температурном интер Вале увеличивается в 2,5 раза по сравнению с твердостью при - -20°С. Твердость титана и кобальта с понижением те.мпературы увеличивается несущественно.  [c.137]

О некоторых свойствах ситалла можно судить по таким факторам. Пластинка из этого материала не окисляется и не изменяет своих габаритов при нагревании свыше 1000°. Она хорошо сопротивляется термоударам — не растрескивается, если опустить ее раскаленной до 800° в воду. По твердости некоторые марки ситаллов превосходят сталь. Они не подвержены действию смеси кислот (царская водка), которая разрушает сталь, алюминий, медь и магний. Синтезированы ситаллы с отрицательным и близким к нулю коэффициентом линейного расширения. Все эти факты свидетельствуют о том, что технические возможности материалов, полученных на основе стекла с микрокристаллической структурой, очень широки.  [c.107]


Например, частицы минерального происхождения, входящие в состав атмосферы, обычно состоят на 70% из кварцевого песка, окисей железа (3—5%), алюминия (15—17%), кальция (2—4%), магния (0,5—1,5%) и др. [33]. Твердость некоторых из них превышает твердость материалов, применяемых для изготовления трущихся деталей гидрооборудования.  [c.117]

В зоне совместной кристаллизации имеется граница между основным и присадочным металлами. В зоне около шва основной материал обладает повышенной твердостью, что свидетельствует о возможной диффузии в него магния с образованием твердого раствора магния в алюминии.  [c.109]

В качестве легирующей добавки к конструкционным материалам, повышающей их прочность и твердость и увеличивающей износо- и коррозионную устойчивость. В виде нитей используется в термосопротивлениях, термоэлементах, гальванометрах. В качестве легирующей добавки при изготовлении ферромагнитных сплавов систем медь—марганец, медь-магний и марганец—углерод. В полупроводниковой технике и радиоэлектронных устройствах (германиевые транзисторы, кристаллические выпрямители и усилители). Изготовление сплавов для электрических контактов  [c.345]

При постоянном углеродном эквиваленте изменение содержания кремния мало влияет на твердость чугуна в закаленном состоянии (рис. 25). Понижение твердости с повышением содержания углерода происходит в основном за счет увеличения содержания графита в чугуне. Однако существенную роль играет величина графитовых включений (рис. 26). Легирование, а также модифицирование магнием повышают прокаливаемость и твердость чугуна после закалки (рис. 27—30). Присадка стали в шихту повышает прокаливаемость чугуна (рис. 31). На прокаливаемость также оказывает влияние величина зерна (рис. 32).  [c.40]

Поскольку упрочняющие фазы сплавов Д1 и Д16 содержат медь и магний, эти элементы считают главными. Они обеспечивают процессы естественного и искусственного старения. Кремний в процессе естественного старения дуралюмина является вредным, так как снижает твердость и прочность сплавов, но в процессе искусственного старения является полезным элементом, образуя упрочнитель Железо во всех случа-  [c.96]

Получены температурные зависимости (от комнатной температуры до l. jOO" С) коэффициента трения чистой окиси алюминия, керамик на ее основе (с содержанием 0,6 1 и 3% окиси магния) и шпинели..Зависимости для вакуума (10 —10- мм рт. ст.) имеют такой же характер, как и для воздуха, но расположены в области более высоких значений коэффициента трения. Лишь для шпинели зависимости в вакууме и на воздухе резко отличаются. Установлена корреляция между температурными зависимостями коэффициента трения и твердости.  [c.151]

Сплавы лития с алюминием, цинком, свинцом и магнием имеют техническое значение [4]. При добавлении 1% лития улучшаются свойства основного металла литий придает металлу вязкость или твердость нлн одновременно оба свойства. Прочность на растяжение и упругие свойства сплавов, легированных литием или содержащих его. Довольно высокие.  [c.365]

Группа II (щелочноземельные металлы). Скандий в достаточной степени растворим в магнии и повышает его твердость. По-видимому, магний и скандий, а также кальцин и скандий не образуют интерметаллических соединений.  [c.667]

Бор аморфный—75— 95 магний фтористый— 5—25. При 1000° С за 2 ч 0,2 мм твердостью HV=1750 кгс/ммЗ.  [c.87]

Промышленный способ производства состоит в обогащении и хлорировании титановой руды с последуюш,им восстановлением из четыреххлористого титана металлическим магнием. Полученная при этом титановая губка маркируется по твердости специально выплавленных из нее образцов (табл. 46).  [c.292]

Химические и физические свойства MgO. Оксид магния — Единственное кислородное соединение магния существует только в одной модификации и кристаллизуется в кубической системе. Кристаллическую форму оксида магния называют периклазом. Она имеет решетку типа каменной соли и постоянную, равную 0,42 нм. Плотность оксида магния 3,58 г/см . Твердость периклаза 6. Температура плавления 2800°С. Теплота образования оксида магния из элементов 613 кДж/моль. Энергия решетки 39 мДж/моль. Поверхностная энергия при 0°С —  [c.139]


В полиграфической промышленности получил применение и цинк с небольшими добавками магния (0,05 /о) и алюминия (0,1%) и имеющий мелкозернистую структуру и повышенную по сравнению с другими сплавами твердость (НВ 55—70). Этот сплав называется микроцинком.  [c.630]

Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция -фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью.  [c.353]

Сплав АЛ32. Сплав обладает хорошей жидкотекучестью и достаточно высокой прочностью по отношению к сплавам АЛ2 и АЛ4. Присутствие в нем магния и титана позволяет получать высокую прочность без термической обработки. Сплав предназначен для литья тяжелонагруженных деталей автомобильных двигателей Блок цилиндров , картер, крышки, головки блока и других деталей. Механические свойства сплава следующие Ств = 270 МПа д = 2% твердость 74 НВ.  [c.70]

Сапфир. Монокристаллы сапфира были рассмотрены в главе третьей в качестве материала подложек микросхем. При легировании ионами хрома Сг + их называют рубином. Молекулярная масса монокристаллов сапфира 101,96, твердость по шкале Мооса 9, температура плавления и кипения соответственно 2313 и 3773К. Теплопроводность этих кристаллов по меньшей мере в два раза выше теплопроводности любого другого оксидного материала, за исключением оксидов бериллия и магния.  [c.74]

Кальций, магний и натрий повышают прочность и твердость свинца и снижают его коррозионную стойкость. Кроме того, малые добавки кальция (более 0,03%) сильно затормаживают рост зерна в свинце и заметиО повышают сопротивление усталости и ползучести свинца.  [c.303]

В дюралюминии содержится примерно 4% меди, до 1,8°/о магния, до 4% марганца и как примеси кремний до 0,7% и железо 0,5%. Из сплава при термообработке выделяются дисперсные соединения uAl2 и Mg2Si (силицид магния) и более сложные соединения типа Al2 uMg. Добавления марганца к существенным изменениям твердости не ведут. Однако его присутствие увеличивает соцротивление коррозии.  [c.56]

Если построить ряды ИЗНОСОСТОЙК01СТИ металлов при трении и ударе об абразивную поверхность в исследованном диапазоне температур (см.табл.25), то МОЖНО отметить, что мягкие металлы сохраняют этот порядок при обоих режимах испытаний. С повышением твердости металлов он нарушается (см. рис. 55), что объясняется различной микротвер-достыо у одних и тех же металлов. Магний и кобальт (а при ударе и молибден) значительно отклоняются от общей тенденции. Отсутствие прямо пропорциональной зависимости е — Я указывает на то, что твердость не является определяющим фактором при изнашивании металлов. Отсюда следует, что чем выше твердость металла, тем доля ее влияния на износостойкость меньше.  [c.144]

Марка снпава Алю- миний Медь Магний Всего приме- сей Цинк Плот- ность Ударная вязкость в кГ-ж/сж2 Твердость 10/1000/30  [c.61]

Для контроля твердости промышленных алюминиевых сплавов широко применяют вихретоковые измерители удельной электрической проводимости. Существует однозначная (близкая к линейной) взаимосвязь между удельно электрической проводимостью и твердостью с учетом процентного содержания добавок меди, марганца, магния и цинка. Удельная электрическая проводимость, как и твердость, характеризует отожженное и естественное старение дюралюминия. Эти закономерности типичны и для многих других цветных сплавов на ОСНОВА меди и мягния (например, для латуни и бронзы). Серийно выпускают вихретоковые измерители удельной электрической проводимости ВЭ-20Н, ВЭ-21Н и ВЭ-22Н с погрешностью измерений 3 %. Приборы работают на частотах, кГц ВЭ-20 Н — 500, ВЭ-21Н — 1000 и ВЭ-22Н — 3000 минимальная толщина детали 1 мм, диаметр зоны контроля накладным преобразователем 20 мм.  [c.275]

Известно много составов баббитов. В СССР стандартизовано восемь марок баббитов (табл. 7), из них в ГОСТ 1320—55 включено шесть марок баббитов, В том числе Б83 и Б89 на оловянной основе (83 и 89% олова) и четыре марки малооловянных свинцово-сурьмяных баббитов. В последней группе баббитов в качестве дополнительных легирующих элементов используются медь, мышьяк, кадмий, никель, теллур и магний. Добавка меди увеличивает твердость и ударную вязкость и, главное, препятствует ликвации свинцово-сурьмяных сплавов. Мышьяк улучшает жидкотекучесть и повышает теплопрочность баббитов. Никель повышает вязкость, твердость и износоустойчивость сплавов. Теллур и кадмий увеличивают прочность и коррозионную стойкость свинцовых баббитов. Висмут является вредной примесью, так как образует легкоплавкую эвтектику.  [c.252]

Особую группу занимают безоловянныё свинцово-кальциевые баббиты БКА и БК2 (по ГОСТу 1209—59). Прочность этих баббитов повышается при естественном старении. Основной легирующий элемент — кальций — придает свинцовым сплавам антифрикционную структуру. Натрий повышает твердость сплава Олово в баббите БК2 улучшает его прилуживаемость (адгезию) к вкладышу подшипника, а также уменьшает угар сплава. Магний повышает твердость этого баббита, а также снижает угар натрия и кальция. Алюминий вводится в баббит БКА с целью модифицирования и улучшения его механических и антифрикционных свойств. Основные свойства баббитов приведены в табл. 8,  [c.252]


Спеченные сплавы Сг—Мо— rBj при 1100° С и напряжении 8,7 кГ/мм обладают стойкостью около 1000 ч в окислительной атмосфере. Керметы Сг—AI2O3 (или окись магния) при 20° С обладают твердостью около 650 кГ/мм , кГ/мм ,  [c.424]

Микролит корундовый (спеченный корунд) — синтетический материал микрокристаллического строения, получаемый из зерен (0,5—0,75 мкм) порошка глинозема высшего качества с введением модификатора (0,6—1,0% окись магния) путем спекания сформированных изделий при 1750° С с последующим кратковременным (5—10 мин) обжигом в области температурпого максимума. Выпускается промышленной марки ЦМ-332 в виде резцовых пластинок, фпльер, сопл, опор п других изделий, готовых к употреблению. Плотность 3,92— 3,96 г/см твердость HRA 92—93 при 20° С и 82 — при 1000° С предел прочности прп изгибе 45—55 кгс/см , дри сжатии 350—500 кгс/см красностойкость около 1200° С коэффициент линейного расширения 8,5 10" в зоне от 20 до 800° С. В областях рационального применения режущий инструмент имеет стойкость, превышающую в 2 раза п более стойкость твердосплавного инструмента износостойкость микролитовых изделий в десятки раз превышает стойкость аналогичных металлических.  [c.411]

Исследования горячей твердости проводились на установке УИМВ-1 до температуры 950° С [3]. Образцы испытывались методом статического вдавливания алмазного индентора (нагрузка 1 кГ), имеющего форму четырехгранной пирамиды с углом при вершине 136°. Результаты испытаний приведены на рис. 5. Изображение температурных зависимостей твердости корундовых керамик в полулогарифмических координатах позволяет обнаружить при температуре 550—600° С перегибы, характеризующие изменение характера деформирования. При этих же температурах начинается резкое снижение коэффициента трения (см. рис. 2 и 3), что свидетельствует о взаимосвязи механических и фрикционных характеристик корундовых керамик. Модифицирование корунда окисью магния повышает твердость керамики, не изменяя характера температурной зависимости. При этом количество модифицирующей добавки для испытанных материалов па величину твердости влияния практически не оказывает. Зависимость твердости шпинели в ис-  [c.52]

Так как содержание химического соединения А18Ь и Mgз8b2 в эвтектике незначительно, то вследствие сегрегации этих соединений по границам зерен основное поле представляет собой твердый раствор я, твердость которого близка к твердости чистого алюминия, чем данный сплав отличается от ранее известных алюминиевых антифрикционных сплавов. Химическое соединение А18Ь, кристаллизующееся в бинарных сплавах алюминия с сурьмой в виде узких игл, при добавках магния кристаллизуется в форме широких пластин (рис. 1, см. вклейку).  [c.333]

По экспериментальным данным [105], предельная растворимость углерода в поверхностном слое и объеме отливки из сплавов на основе никеля, железа и кобальта составляет (%) 0,55 и 1,85, 2,0 и 2,06, 0,1 и 1,65 соответственно. Растворимость железа, циркония, церия, титана, хрома, магния в поверхностном слое и объеме отливок из алюминия составляет 0,05/0,17, 0,0/8,0, 0,0/9,0, 0,15/0,32, 0,7/5,8, 17/36 соответственно. При этом необходимо учитывать, что при избытке поступающих элементов в поверхностном слое отливки образуются соединения типа Me jj, Ме Н, , NVe Oy, Me Sy и другие твердые фазы, наличие которых резко увеличивает твердость, трещиночувствительность, физическую и химическую неоднородность отливки. По активности образования новых твердых фаз в поверхностном слое первое место занимают отливки из титана и его сплавов, второе — отливки из чугуна, третье — из легированных сталей. Кроме того, если к отливкам предъявляются высокие требования по теплоотдаче в условиях эксплуатации, то при выборе металла для отливок с развитой поверхностью учитывают его теплопроводность.  [c.12]

При добавлении к свинцу 0,05% или меньшего количества лития значительно улучшаются литейные и физические свойства свинца, который становится более вязким и твердым, сохраняя удовлетворительную пластичность. В то же время значительно повышаются предел прочности при растяжении и модуль упругости. Кроме того, присутствие лития в свинце обеспечивает более мелкозернистую структуру и замедляет рекристаллизацию. Гарре и Мюллер (391 сравнивали влияние добавок различных элементов, например меди, сурьмы, олова, никеля, цинка и магния, с влиянием добавок лития на размер зерен и твердость свинца. Результаты, полученные этими исследователями, ясно показывают, что из всех испытанных элементов литий придает свинцу наиболее мелкозернистую структуру и наибольшую твердость. Кох [72] предложил применять сплавы лития и свинца, особенно те, которые содержат небольшие добавки кадмия или сурьмы, для изготовления кабельных оболочек. Он установил, что свинец, содержащий 0,005% лития, имеет значительно более высокий предел прочности при растяжении по сравнению с чистым свинцом.  [c.367]

Почти все промышленные сплавы алюминия и магния содержат марганец, который повышает их коррозионную стойкость и механические свойства (твердость). Содержание марганца редко превышает 1,2% для магниевых и 1,5/0 для алюминиевых сплавов. При производстве алюминиевых сп.чавов электролитический марганец конкурирует с чистыми окислами, карбонатом марганца и ферромарганцем с низким содержанием железа, которые можно добавлять непосредственно в восстановительные тигли, а при производстве магниевых сплавов — с чистым хлоридом марганца, который добавляют в плавильные тигли.  [c.398]

Металлический кальций намного тверже натрия, но мягче алюминия и магния. По прочностным характеристикам он стоит гораздо ближе к алюминию и магнию, чем к натрию. Катодный осадок кальция в том виде, в каком он получается из ванны, в поперечном разрезе при нагрузке 500 кг имеет твердость по Бринеллю ИвП- При тех же условиях металлический натрий настолько мягок Н < I), что измерения не могут быть проведены. Твердость Нд для чистого алюминия равна 25, а для магния 30 (твердость магния, производимого фирмой Дау кемикл компани , составляет 32). Твердость кальция по Роквеллу Rh равна 36—40. По склероскопу Шора твердость нормальной поковки кальция равна 7—9, при усиленной проковке она достигает 11—12 (соответствующие значения твердости для магния равны 20 и 23).  [c.932]

С целью повышения твердости режущего слоя алмазного инструмента и понижения склонности к адгезионному схватыванию с обрабатываемым материалом рекомендуется металлическая связка следующего состава. Л1едь — 28—46 кремний — 3— 12 марганец — 0,1—2,5 магний — 0,5 никель—0.1—3 карбидообразующий элемент (Сг, Ti, Zr) —0,1—2 алюминий—остальное.  [c.164]


Смотреть страницы где упоминается термин Магний Твердость : [c.307]    [c.159]    [c.137]    [c.80]    [c.104]    [c.275]    [c.414]    [c.54]    [c.45]    [c.128]    [c.284]    [c.120]    [c.219]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.422 ]

Чугун, сталь и твердые сплавы (1959) -- [ c.70 ]



ПОИСК



Магний



© 2025 Mash-xxl.info Реклама на сайте