Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пространственные Дуги — Длина

Глубина, па которую расплавляется основной металл, называется глубиной проплавления. Она зависит от режима сварки (силы сварочного тока и диаметра электрода), пространственного положения сварки, скорости перемещения дуги по поверхности изделия (торцу электрода и дуге сообщают поступательное движение вдоль направления сварки и поперечные колебания), от конструкции сварного соединения, формы и размеров разделки свариваемых кромок и т, п. Размеры сварочной ванны зависят от режима сварки и обычно находятся в пределах глубина до 7 мм, ширина 8—15 ми, длина 10—30 мм. Доля участия основного металла в формировании металла шва (см. гл. III) обычно составляет 15—35%.  [c.18]


Зажигание и поддержание дуги. Перед зажиганием (возбуждением) дуги следует установить необходимую силу сварочного тока, которая зависит от марки электрода, пространственного положения сварки, типа сварного соединения и др. (см. гл. V). Зажигать дугу можно двумя способами. При одном способе электрод приближают вертикально к поверхности изделия до касания металла и быстро отводят вверх па необходимую длину дуги. При другом — электродом вскользь чиркают по поверхности металла. Применение того или иного способа зажигания дуги зависит от условий сварки и от навыка сварщика.  [c.19]

Длина дуги зависит от марки и диаметра электрода, пространственного положения сварки, разделки свариваемых кромок и т. п. Нормальная длина дуги считается в пределах /д = (0,5 -н  [c.19]

Часто приходится решать задачу на определение длины пространственной кривой линии, заданной ее ортогональными проекциями. Графически Э1а задача решается приближенно, заменой дуги кривой отрезками прямых.  [c.157]

На рис. 237 представлен чертеж пространственной кривой линии. Для определения ее длины на этой кривой намечаем ряд точек 00, Л, 22, так, чтобы дуги кривой были близки к отрезкам прямых.  [c.157]

Измеряя длины дуг s заданной пространственной кривой линии и соответствующие им углы а смежности и Д кручения, построим графики зависимостей <х /(s) и р F (s). Такие зависимости называют уравнениями пространственной кривой линии в естественных координатах.  [c.338]

Теперь рассмотрим спрямление пространственной кривой для определения длины ее дуги (рис. 125).  [c.123]

Винтовая линия — пространственная кривая (рис. 2, а), представляющая собою место точек М па перпендикулярах к плоскости направляющей кривой с, если длина РМ пропорциональна дуге АР.  [c.20]

В самостоятельном разряде начиная с токов выше нескольких микроампер наблюдается неравномерное распределение электрического поля в межэлектродном пространстве, состоящем из трех зон (рис. 2.6) катодной 1, анодной 2 и столба разряда 3. На электродах часто наблюдаются пятна — анодное А и катодное К. Скачки потенциала и Ул обусловлены скоплениями пространственного заряда (рис. 2.7) и повышенным сопротивлением этих зон по сравнению со столбом. В длинной дуге можно отчетливо различить три указанные выше области, причем основные свойства столба мало зависят от процессов в катодной и анодной зонах. В связи с этим в дальнейшем отдельно рассмотрены явления в столбе дуги и в пограничных областях — катодной и анодной. Для коротких дуг, где влияние  [c.37]


Полученные точки пересечения Ао, 1q, 2q, Зо,. .., Вд укажут вершины ломаной линии, выпрямив которую, получим отрезок [Ло,Во,]> равный длине пространственной кривой с точностью аппроксимации дуг кривой их хордами.  [c.81]

Это уравнения той же траектории, т. е. винтовой линии, в виде (7.2). Чтобы получить выражение для s=s( ), имея в виду естественный способ задания движения, можно было бы применить соответствующие формулы интегрального исчисления, исходя из уравнений (7.7). Однако в конце следующего параграфа (п. 2.3) мы выведем интересующую нас формулу для определения длины дуги пространственной кривой.  [c.151]

Длину шатуна можно получить графически она соответствует расстоянию между окружностями 1—1 и 2—2, когда точки последних находятся в плоскости чертежа в левом крайнем положении. Эту длину получим в масштабе чертежа, измерив расстояние между точками В и С по прямой линии или по дуге (рис. 3). Аналогичный ромбоид можно получить, когда траектория 2—2 точки С касается оси враш,ения второй неподвижной кинематической пары О А. В полученном механизме (рис. 3) двум полным оборотам звена АВ соответствует один полный оборот звена D . В этом можно легко убедиться, если представить механизм в двух проекциях и для последовательных положений звена АВ строить положения звена D (рис. 4). Направления плоскостей проекций выбираем согласно разработанному методу построения положений пространственных четырехзвенных механизмов [1].  [c.9]

За параметр, определяющий пространственную линию, можно принять длину дуги s для этого из уравнения t  [c.214]

Длина дуги отрезка гладкой пространственной кривой x = (f(t), y = t), 2=х(0. [c.102]

При сварке покрытыми электродами перенос электродного металла осуществляется в основном крупными каплями различного размера. Внутри крупных капель могут находиться газы, выделяющиеся при плавлении покрытия и металла электрода. Под действием давления газов крупная капля разрывается, образуются более мелкие капли, брызги и частицы пара. К моменту попадания в ванну капли имеют неодинаковые размеры. При крупнокапельном переносе с короткими замыканиями и без них частота образования капель и их размер не остаются постоянными, что ведет к значительным колебаниям силы тока и напряжения дуги, осложняя получение высококачественного шва. Большую стабильность переноса электродного металла возможно получить лишь при струйном переносе (рис. 48, в). С увеличением силы тока размер капель уменьшается, а число их, образующееся в единицу времени, возрастает. Начиная с некоторой силы тока, которую называют критической, крупнокапельный перенос становится мелкокапельным. Мелкие капли образуют почти сплошную струю жидкого металла, которая переходит в сварочную ванну без коротких замыканий. При струйном переносе сила тяжести мелких капель невелика, что позволяет эффективно использовать этот процесс при сварке во всех пространственных положениях. Струйный перенос характеризуется гораздо меньшими колебаниями силы тока и напряжения, а также значительно меньшим разбрызгиванием, чем крупнокапельный. Однако при чрезмерно высоком значении силы тока стабильный струйный перенос переходит во вращательно-струйный, для которого характерно повышенное разбрызгивание, непостоянство длины дуги, напряжения и силы тока. Таким образом, стабильный струйный перенос существует лишь в некотором диапазоне значений силы тока, о чем и следует помнить при выборе параметров режима.  [c.90]

Малая чувствительность к образованию пор в металле щва при коррозии и окалине на свариваемых кромках, при сварке длинной дугой и на форсированных режимах хорошая стабильность горения дуги при сварке переменным током, легкое зажигание дуги высокая производительность процесса возможность сварки швов во всех пространственных положениях  [c.84]

Электроды с рутиловым покрытием обладают хорошими сварочно-технологическими свойствами обеспечивают условия для формирования шва с плавным переходом к основному металлу, малое разбрызгивание расплава, легкую отделимость шлака, сварку во всех пространственных положениях, стабильное горение дуги на постоянном и переменном токах. Металл шва мало склонен к образованию пор при колебаниях длины дуги и сварке по окисленной или загрязненной поверхности. Наплавленный металл соответствует по химическому составу полуспокойной или спокойной стали. Покрытие этого вида имеют электроды марок АНО-4, ОЗС-12 и др.  [c.63]


Длина дуги зависит от марки и диаметра электрода, пространственного положения сварки, разделки свариваемых кромок и т.п. Нормальная длина дуги считается в пределах /д = (0,5. .. , V)d (< эл - диаметр электрода). Увеличение длины дуги снижает качество наплавленного металла шва ввиду его интенсивного окисления и азотирования, увеличивает по-  [c.95]

Сварку можно выполнять в любом пространственном положении. Для получения хорошего провара и формирования головки заклепки соединение следует собирать с минимальным зазором между листами. Качество соединений и их механические свойства зависят главным образом от силы сварочного тока, времени горения дуги и ее длины. Для регулирования времени горения дуги служат реле. При использовании в качестве защитного газа гелия диаметр заклепки получается больше, а глубина проплавления меньше, чем при использовании аргона.  [c.140]

Согласно теоремам 9 и 16 (п. 1.1) отрезок и сохраняет прямолинейность, а дуга S — кривизну в каждой точке. Координаты точек плоского ребра возврата связаны с координатами точек пространственной линии (5.1) зависимостью (5.3), где х, у — координаты точек плоского ребра возврата, а К—кривизна пространственного ребра возврата как функция длины его дуги. Кривизна K=K s) может быть получена по формуле (5.5). Таким образом, зависимость между координатами точек на торсовой поверхности и развертке получает вид [147]  [c.114]

Пусть прямая АВ (рис. 5.13) есть преобразование заданной кривой линии. Отложим на прямой АВ от точки О длины дуг 1S ряда точек пространственной кривой. Проводя из концов полученных отрезков прямые линии под углом б, где  [c.136]

Рис. 27. К рассмотрению понятий временная (продольная) и пространственная (поперечная) когерентность. Атомы источника S испускают ограниченные во времени и пространстве цуги волн С[, Сг, Сз. Степень временной когерентности излучения в точке Zi определяется способностью к взаимной интерференции компонент колебаний в этой точке при их взаимном смещении во времени. Если разность хода луча в плечах интерферометра Z2 и Z3 превышает длину цуга р, то интерференция в точке а не наблюдается. Пространственная когерентность определяет способность к взаимной интерференции излучения в точках поля, расположенных поперек луча. В частности, если отверстия Si и 5г находятся на расстоянии, меньшем ширины цуга Л, то и излучение, прошедшее через эти отверстия, образует в районе точки В устойчивую картину интерференции (график а ). При смещении отверстия 5г в положение S2 расстояние между отверстиями превышает поперечные размеры дуга. Интерференция в этом Рис. 27. К рассмотрению <a href="/info/129479">понятий временная</a> (продольная) и пространственная (поперечная) когерентность. Атомы источника S испускают ограниченные во времени и пространстве цуги волн С[, Сг, Сз. <a href="/info/144151">Степень временной когерентности</a> излучения в точке Zi определяется способностью к взаимной интерференции компонент колебаний в этой точке при их взаимном смещении во времени. Если <a href="/info/164756">разность хода луча</a> в плечах интерферометра Z2 и Z3 превышает длину цуга р, то интерференция в точке а не наблюдается. <a href="/info/10179">Пространственная когерентность</a> определяет способность к взаимной интерференции излучения в точках поля, расположенных поперек луча. В частности, если отверстия Si и 5г находятся на расстоянии, меньшем ширины цуга Л, то и излучение, прошедшее через эти отверстия, образует в районе точки В устойчивую картину интерференции (график а ). При смещении отверстия 5г в положение S2 расстояние между отверстиями превышает поперечные размеры дуга. Интерференция в этом
Длина некоторого участка кривой как плоской, так и пространственной определяется приближенно, путем замены кривой линии ломаной, вписанной в эту кривую, и измерения длины звеньев этой ломаной линии (это, конечно, не относится к тем кривым, длина которых может быть определена путем несложных вычислений )). Для уменьшения ошибки следует брать отрезки ломаной, мало отличающиеся по длине от дуг кривой, хордами которых являются эти отрезки. На рис. 291 показано определение длины кривой АВС горизонтальная проекция — кривая ab — разбита на малые части и развернута в прямую на оси х так, что отрезки Оо/о, иЬо и т. д. соответственно равны хордам al, / > и т. д. в точках Оо, /о и т. д. проведены перпендикуляры к оси х, и на этих перпендикулярах отложены аппликаты точек кривой. Получаем ломаную, длина которой может быть приближенно принята за длину кривой АВС.  [c.172]

Если вместо угла между касательными, как это имело место для плоских кривых, и отношения между этим углом и длиной дуги между точками касания взять угол между соприкасающимися плоскостями (он равен углу между бинормалями) и разделить этот угол на длину дуги между рассматриваемыми точками пространственной кривой, то в предельном значении этого отношения получается так называемая кривизна кручения или вторая кривизна пространственной кривой. Вспомним, что пространственные кривые иначе называются кривыми двоякой кривизны.  [c.178]

Ручная дуговая сварка неплавящимся электродом является лучшим способом для сварки изделий из тонколистового металла, так как обеспечивает -минимальную деформацию изделия и высокое качество сварного шва. Сварку ведут на переменном токе с применением осцилляторов. С помощью переменного тока разрушается оксидная пленка, что достигается катодным распылением в моменты, когда катодом является изделие. Ручную сварку можно выполнять во всех пространственных положениях как с присадочным металлом, так и без него. Дуга, длина которой не должна превышать 1,5—2,5 мм, зажигается на вспомогательной графитовой пластинке, а затем переносится на изделие. Расстояние от выступающего конца электрода до нижнего среза наконечника горелки при сварке стыковых соеди-  [c.119]

Чрезмерная сила тока при длинной дуге и большой скорости сварки, увеличенный наклон сварного шва, неправильное манипулирование электродом, неудобное пространственное положение шва, выполнение вертикальных швов снизу вверх и недостаточный опыт сварщика могут привести к наплывам (рис. 85) расплав-  [c.231]

Наряду с качеством металла шва, полученного при сварке данным электродом, важное значение имеют и его технологические свойства. К основным технологическим свойствам электрода относят его производительность, пригодность для сварки в различных пространственных положениях, стабильность горения дуги при постоянном и переменном токе, допустимую максимальную и минимальную длину дуги, форму шва, коэффициенты наплавки, расплавления и потерь.  [c.68]


Квалификация сварщика определяется следующими навыками быстрое зажигание дуги, поддерживание нужной ее длины, равномерное продвижение дуги по шву, умение выполнять колебательные движения электродом при сварке различных соединений, умение выполнять швы в любых пространственных положениях, а также сваривать различные металлы — углеродистые стали, чугун, нержавеющие стали, цветные металлы и т. д.  [c.39]

Сварка сжатой дугой на малых токах (0,1... 10 А) получила название микроплазмепной сварки. При таких токах сваривают детали с толщиной кромок 0,025...0,8 мм. По сравнению со сваркой открытой дугой изменение длины малоамперной сжатой дуги оказывает значительно меньшее влияние на качество сварного соединения. Сильно возрастает пространственная устойчивость дуги.  [c.232]

По своим технологическим свойствам электроды должны обеспечивать стабильное горение дуги, спокойное плавление и хорошее формирование расплавленного металла при сварке во всех пространственных положеш1ях, получение плотного и прочного металла шва при ведении процесса сварки дугой различной длины (от 0,5 до 3 мм), во всех пространственных положениях глубину провара не менее 1—1,5 мм. Электроды не должны образовывать поры при небольшом количестве влаги (инея) или ржавчины на кромках свариваемых труб.  [c.571]

Названные плазмотроны имеют много общего между собой, так как в них могут быть использованы одни и те же конструкции электродных узлов, способы стабилизации ириэлектродных участков дуги, ее длины и пространственного положения и т. п. В связи с этим ниже более подробно рассмотрены однодуговые плазмотроны и меньшее внимание уделено особенностям плазмотронов с распределенной дугой и многодуговых.  [c.86]

Для улучшения технологических свойств дуги применяют периодическое изменение ее мгновенной мощности — импульсно-дуговая сварка (рис. 48). Теплота, выделяемая основной дугой, недостаточна для плавления электродной проволоки со скоростью, равной скорости ее подачи. Вследствие этого длина дугового промежутка уменьшается. Под действием импульса тока происходит ускоренное раснлавлепиэ электрода, обеспечивающее формирование капли на его конпе. Резкое увеличение электродинамических сил сужает шейку канли и сбрасывает ее в направлении сварочной ванны в любом пространственном по-ло5кении.  [c.56]

Длина дуги пространственной кривой. Лиференциал дуги. Если линия задана уравнениями  [c.214]

Р = Pit), if = ifit), z = z(t), воспользуемся выражением для дифференциала длины дуги пространственной кривой  [c.314]

Линии дислокаций между узлами пространственной сетки стремятся выпрямиться, чтобы уменьшить потенциальную энергию, связанную с искажениями кристаллической решетки. Поэтому можно говорить оТнекотором линейном натяжении дислокации, численно равном потенциальной энергии U, приходящейся на единицу ее длины. При действии "вХ плоскости скольжения внешнего касательного напряжения т линия дислокации между точками закрепления А и В выгибается по дуге радиуса г = Ul xb) (рис. 2.17, а, позиция 1).  [c.88]

Для сварки в любом пространственном положении применяют также аппараты с непла-вящимся электродом с присадкой или без нее. Особенностями сварки неплавящимся электродом являются возможность независимого управления мощностью дуги (отдельно силой тока и длиной, а следовательно, напряжением) и количеством присадочного материала инертная защита сварочной ванны и, при сварке током обратной полярности или переменным, ее катодная очистка.  [c.78]

Для стабилизации параметров режима помимо информации о пространственном положении горелки необходима информация о текущих значениях параметров и состоянии сварочного оборудования. Для дуговой роботизированной сварки плавящимся электродом в общем случае необходимо измерять следующие величины мгновенное и действующее значения силы сварочного тока и напряжения на дуге скорость сварки энергию, приходящуюся на единицу длины шва скорость подачи и вылет электродной проволоки количество израсходованной и оставшейся проволоки расход, давление и состав защитного газа или смеси газов температуру, расход и давление охлаждающей жидкости износ наконечника забрызгивание сопла. Косвенный контроль двух последних величин может быть осуществлен путем измерения времени сварки, отсчитываемого после очередной замены наконечника и сопла, и сопоставления этого времени с ресурсом работы указанных деталей.  [c.141]

Сварка под водой производится в основном на постоянном токе. Устойчивое горение сварочной дуги в водной среде позволяет выполнять сварку во всех пространственных положениях. Однако получение сварного шва хорошего качества затруднено из-за плохой видимости места сварки. Состав электродного покрытия проще, чем у обычных электродов. Например, покрытие марки ЛПО-5 состоит из 17% двуокиси титана, 36% ферромарганца, 17% талька и 30% плавикого шпата. Покрытие замешивается на жидком стекле. Для удобства работы применяют электроды длиной до 350 мм.  [c.126]


Смотреть страницы где упоминается термин Пространственные Дуги — Длина : [c.60]    [c.11]    [c.293]    [c.74]    [c.176]    [c.17]    [c.131]    [c.134]    [c.101]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.283 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.283 ]



ПОИСК



Вес дуги

Дуги пространственных кривых-Длин

Дуги —Длина

Дуги —Длина пространственных кривых—Длин



© 2025 Mash-xxl.info Реклама на сайте