Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминиевый Плотность

До 1906 г. алюминий применяли в чистом виде, но в этом году А. Вильм почти случайно нашел способ упрочнения сплава А1—Си в результате закалки и старения, а предложенный им сплав Си, 0,5% Mg, 0,5% Мп) является и сейчас самым распространенным алюминиевым сплавом (дюралюминий). Сейчас широкое применение как конструкционный материал имеет не чистый алюминий, а сплавы алюминия, в первую очередь дюралюминий ввиду его высокой прочности (сгв = 30- 60 кгс/мм ) и малой плотности (2,6—  [c.565]


Сплав 01420 является самым легким алюминиевым сплавом, его плотность 2,5 г/см что меньше плотности чистого алюминия (2,7 г/см ) и тем более высоколегированного сплава В95 (2,9 г/см ), что для авиационных материалов весьма существенно.  [c.588]

Для металлизации применяют проволоки медные, алюминиевые, стальные и цинковые, а также неметаллические материалы в виде Порошков (стекла, эмали, пластмасс). Металлизационный слой состоит из мелких поверхностно-окисленных частичек металла и имеет меньшую прочность и плотность по сравнению с наплавленным слоем. Металлизацию применяют для защиты от изнашивания, коррозии, а также в декоративных целях для таких изделий, как Цистерны, бензобаки, мосты, изнашивающиеся части валов, деталей машин и т. п.  [c.229]

Задача УШ—32, Алюминиевый шарик (относительная плотность = 2,6), имеющий диаметр й( = 4 мм, свободно падает в жидкости, относительная плотность которой б = 0,9.  [c.222]

Легкие сплавы — это спланы с плотностью не более 3,5 на алюминиевой или магниевой основе. Легкие сплавы делятся на литейные и деформируемые.  [c.36]

Дуги с неплавящимся (тугоплавким) катодом. Если катод сварочной дуги выполнен из материала с высокими температурами плавления и кипения (для вольфрама 7 = 3650 К, = 5645...6000 К для угля Т возг = 4470 К), то он может быть нагрет до столь высокой температуры, при которой основная часть катодного тока обеспечивается термоэлектронной эмиссией. Учитывая, что торированный W-катод представляет собой пленочный катод, а примеси из столба дуги (если изделие, например, алюминиевый сплав) могут также снизить работу выхода, то расчетные значения плотности тока могут быть такими, как в приведенном ниже примере (цифры для простоты расчета взяты округленно).  [c.71]

Алюминиевые сплавы относятся к так называемым легким сплавам с плотностью не более 3500 кг/м . Эти сплавы делятся  [c.163]

Такой же критерий (соотношение между размером неоднородностей и длиной волны) определяет роль макроскопических неоднородностей. Если сплошное тело (помимо неоднородностей, обусловленных атомной структурой, которые можно не учитывать) макроскопически неоднородно, например, упругий стержень составлен из сильно прижатых друг к другу чередующихся одинаковых латунных и алюминиевых цилиндров ), то для нормальных колебаний, соответствующих волнам, длина которых значительно превышает высоту одного цилиндра, стержень можно рассматривать как однородный, обладающий средней плотностью и средней упругостью. При расчете же нормальных колебаний, длина волны которых сравнима с высотой цилиндра, необходимо учитывать неоднородность стержня. При наличии неоднородностей решение задачи о колебаниях сплошных систем настолько усложняется, что удается рассмотреть только самые простые случаи, например системы с малой неоднородностью или очень плавно меняющимися вдоль длины системы свойствами.  [c.697]


Однако, как это часто бывает, задача снова упрощается при переходе к другому предельному случаю — к очень сильным неоднородностям. Представим себе, что в рассмотренном составном стержне алюминий мы заменяем материалом, плотность и жесткость которого настолько меньше, чем у латуни, что массой бывшего алюминиевого цилиндра можно пренебречь по сравнению с массой латунного, а жесткость латунного цилиндра можно считать бесконечно большой по сравнению с жесткостью бывшего алюминиевого . Мы пришли к случаю предельной неоднородности участки системы, в которых находятся бывшие алюминиевые цилиндры, обладают упругостью, но не обладают массой, а участки, в которых находятся латунные, обла-  [c.697]

К металлическим материалам относятся черные металлы (чу-гукы и стали), сплавы цветных металлов (бронзы, латуни, баббиты), легкие сплавы (алюминиевые и магниевые), биметаллы. Черные металлы являются основными машиностроительными материалами. Они сравнительно дешевы, обладают высокой прочностью. Сплавы цветных металлов дороги, но имеют высокие антифрикционные свойства, хорошо обрабатываются резанием. Легкие сплавы (силумин, дюралюминий и др.) имеют малую плотность и обладают хорошими литейными свойствами.  [c.353]

Шкивы из алюминиевых сплавов имеют среди металлических шкивов минимальную массу и могут использоваться при скоростях до 100 м/с, так как малая плотность этих сплавов значительно снижает центробежные нагрузки.  [c.101]

Благоприятное действие оказывает титан на электрохимическое поведение алюминиевых покрытий в сероводородсодержащей среде (1200 г/л HjS). Введение 1,1 % Ti приводит к некоторому облагораживанию стационарного потенциала (от —570 до —550 мВ), не оказывает влияния на потенциал полной пассивации ( " = -500 мВ), способствует появлению обширной области пассивности, смещает потенциал пробоя от —180 до +140 мВ, уменьшает плотность тока полной пассивации в  [c.93]

Алюминиевые сплавы (литейные АЛ и деформируемые) имеют плотность р = 2,6 ч- 2,9 г/см (почти в 3 раза меньшую, чем стали) и удельную прочность, приблизительно равную удельной прочности стали.  [c.276]

Из оксидированного алюминия могут изготовляться катушки, работающие при высокой плотности тока. Малая толщина оксидной изоляции, облегчая теплоотвод, иногда позволяет компенсировать увеличение удельного сопротивления материала проволоки при замене меди алюминием (см. стр. 201). В некоторых случаях оказывается предпочтительным изготовлять обмотки не из проводов круглого сечения, а из алюминиевой анодированной ленты в последние годы анодированные алюминиевые лента и фольга применяются в электротехнике даже чаще, чем круглые анодированные провода.  [c.184]

Магний является полезным легируюш,им элементом. Не считая повышения коррозионното со1противления2, магний уменьшает плотность алюминиевого сплава (так как он легче алюминия), повышает прочность, не снижая его пластичность. Поэтому сплавы А1 — Mg получили распространение как более прочные и легкие, чем чистый алюминий.  [c.582]

Алюминий, упрочненный частицами окиси алюминия (САП). Дисперсноу-прочченный алюминий, содержащий 6—23% АЬОз или САП спеченная алюминиевая пудра), значительно превосходит деформируемые и литейные алюминиевые сплавы по прочности при температурах выше 300°С (рис. 465). В табл. 153 приведены составы и механические свойства отечественных марок С.4П. По плотности и коррозионной стойкости САП практически не отличается от алюминия.  [c.636]

Отлпвкн под низким давлением получают в кокилях, песчаных и оболочковых формах и формах для литья по выплавляемым моделям. Этот способ литья значительно сокращает расход металла на литники, улучшает заполняемость форм, повышает плотность и герметичность отливки. Литьем под низким давлением изготовляют тонкостенные отливки корпусного типа из алюминиевых, магниевых, медных сплавов и реже из стали массой от нескольких десятков граммов до 50 кг.  [c.154]

В последнее время значительно возрос объем ирнмеиенпя так называемых компактных конструкционных материалов, получаемых из порон1Ков самых различных металлов н сплавов. В связи с высокой плотностью механические свойства их практически не снижаются, а отдельные эксплуатационные свойства значительно увеличиваются. Например, спеченный алюминиевый порошок (САП) в своем составе содержит до 15% оксидов алюминия, которые в виде топкой пленки покрывают зерна алюминия и образуют в спеченном материале непрерывный каркас. Такая структура придает материалу высокую теплостойкость. Этот материал может длительное время работать при температурах до 600 °С. САП по сравнению с обычным алюминием имеет более низкий температурный коэффициент. Применяют САП для изготовления компрессорных лопаток, поршней, колец для газовых турбин и т. д. Перспективно прнмененгге компактных конструкционных материалов в условиях крупносерийного и массового производствах деталей сложной конфигурации небольших размеров.  [c.421]


Задача VIII—33. Для определения вязкости жидкости к te плотности наблюдают равномерное падение в ней двух различных luapnKOB, алюминиевого диаметром == 3 мм (С-тносительная плотность — 2,6) ir пластмассового диаметром i/j = 4,5 мм (бо == 1,4). Скорости равномерного двнжсиня шариков соответственно составляют  [c.223]

Пусть две машины одинаковых размеров и с одинаковыми яараметрамн иэготовзвешл одна преимущественно из стали н, чугуна, а другая — из легких сплавов (алюминиевых). Очевидно масса второй машины меньше массы первой ариблизительйо во столько раз, во сколько плотность тяжелых материалов больше плотности легких (в данном случае приблизительно в 2 раза). Металлоемкость же, рассматриваемая как количество вложенного в машину металла, у них одинаковая.  [c.101]

Алюминиевые сплавы. Алюминиевые сплавы обладают малой плотностью (3 кг/дм ), высокой теплопроводностью [А. = 100 150 калДм. ч.°С)]  [c.180]

В биметаллических тонкостенных вкладышах применяют алюминиево-оловянные сплавы, содержащие до 20% 5п. Наиболее распространены сплавы типа АО20 —1 (20% 5п Т% Си остальное А1) и сплав 6% 8п 1% Си 0,5-1% N1 1-1,5% 81 (остальное А1). Твердость антифрикционных алюминиевых ыктавов НВ 35—45, теплопроводность 150 — 200 кал/(м.-ч-°С), коэффициент линейного расширения (20-22)10 1ДС, плотность 2,7 т/см .  [c.376]

Сварка плавлением. Рассмотрим сварку плавлением встык ванным способом двух алюминиевых стержней диаметром 20 мм. Согласно обобщенной схеме баланса энергии (см. рис. 1.6, а) существует внешний источник энергии, которая вносится с расплавляемым электродным металлом. Удельное объемное энергосодержание расплавленного металла при температуре его плавления составляет АЯ = у(Спл7 пл + ПЛ) > где у — плотность — УДельная теплоемкость — скрытая теплота плавления металла.  [c.28]

Основные дефекты при сварке алюминиевых и магниевых сплавов — пористость и наличие оксидных включений в металле шва, так как оксидь[ AI2O3 и MgO обладают большей плотностью, чем жидкий металл, и не растворяются в нем.  [c.388]

Титановую губку получают из рутила (T1O2) и ильменита (TiFeOa) на ферросплавных заводах. Она представляет собой пористый бесформенный металлический материал серого цвета с небольшой плотностью (800 - 2500 кг/м ). В табл. 90 приведены химический состав и марка титановой губки по ГОСТ 17746-72. Хранят и транспортируют титановую губку в алюминиевых барабанах.  [c.305]

Задача VIII-33. Для определения вязкости жидкости и ее плотности наблюдают равномерное падение в ней двух различных шариков, алюминиевого == 3 мм (относительная плотность = 2,6) и пластмассового d = 224  [c.224]

Катодное поведение электростатических и электрофоретических алюминиевых покрытий подобно поведению чистого алюминия. Они сильно поляризуются уже при малых плотностях тока и имеют достаточно высокое перенапряжение вьоделения водорода. Электрофоретические алюминиевые покрытия обладают наибольшим значением перенапряжения водорода по сравнению с покрытия.ми, пол>ченны. ш ikj собом электростатического и вакуумного напыления. При получении покрытий из порошковых материалов на электрохимические свойства  [c.81]

Анодный контроль наиболее значителен у алюминиевых и никелевых покрытий, которые имеют обширную область анодной пассивности от 50 до 180 мВ для алюминиевого при плотности тока полной пассивации = 20 мкА/см и от О +900 мВ для никелевого при плотности тока полной пассивации /дц = 10 мкА/см . Смещение потенциала стали при наличии на поверхности Ni - Р покрытия выше потенциала вьщеления водорода, что исключает восстановление ионов Н и способствует высокой стойкости покрытий в наводороживающих средах. Для кадмиевого покр(.1Тия область пассивности отсутствует, однако анодный процесс растворения затруднен, токи растворения даже при потенциале 100 мВ незначительны. Катодная поляризация наиболее значительна у алюминиевого и цинкового покрытия и уменьшается к кадмиевому и никелевому. Высокий защитный эффект покрытий в сероводородсодержащих средах подтверждается данными по поляризационному сопротивлению как без растягивающих нагрузок (а = 0), так и при них (о = 1,1 Оо - ) (табл. 21).  [c.86]

Благоприятное действие дооавок кремния и титана на коррозионную стойкость алюминиевых покрытий на стали заключается в появлении новой, отличной от чистого алюминия структуре. В алюминиевом сплаве, начиная от содержания 0,6 % кремния, фиксируются две структурные составляющие, из которых ок >аза имеет электродный потенциал, близкий к чистому алюминию, тогда как 3-фаза катодна по отношению к алюминию и потенциал ее близок к потенциалу чистого кремния (-0,66 В). Вследствие этого подобные покрытия можно рассматривать как алюминиевые с катодной добавкой, что подтверждается характером изменения стационарного потенциала с ростом содержания кремния. С увеличением плотности тока на анодных участках и степени облагораживания потенциала облегчается возможность перехода анодных участков в пассивное состояние.  [c.94]

В этом случае наращивают оксидные пленки высокого качества толщиной до 300-350 мкм и микротвердостью до 450-550 МПа. Для получения пленок толщиной 40-60 мкм с микротвердостью 350—400 МПа можно ограничиться только интенсивным перемешиванием охлажденного электролита (без внутреннего) охлаждения. В табл. 31 приведены характеристики оксидных анодных пленок, полученных на алюминиевых сплавах по режиму толстослойного твердого анодирования в 18 %-ном растворе H2SO4 при плотности тока 2,5 А/дм , температуре 270 К и конечном клеммовом напряжении 82 В.  [c.122]


Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

Сплавы на основе алюминия. Сплав А1—Mg марки АМгб (магналий) является деформируемым и термически неупрочняемым, состав сплава 6,3% Mg 0,6% Мп 0,06% Ti. Магний уменьшает плотность алюминиевого сплава (рмй= 1,74 г/см ), повышает прочность без снижения пластичности и коррозионную стойкость. При 20° С сплав имеет следующие свойства = 330 Мн/м (33 кгс/мм ) б = 24%. Сплав АМгб теплостоек до 250° С, при этой температуре его свойства следулощие = = 160 Мн/м (16 кгс/мм ) б = 45%. Этот сплав применяют при изготовлении труб, крышек и корпусов приборов, кронштейнов, экранов, стрелок и т. д.  [c.270]

Железо-никель-алюминиевые сплавы, как и железо-никель-алюминиево-медные и железо-никель-алюминиево-кобальтовые, используются для получения деталей и металлокерамическим способом. Этот способ особенно выгоден для изготовления мелких деталей массой от долей грамма до 30 г. Применение металлокерамической технологии решило задачу производства мелких деталей из сплавов, содержащих кобальт. Металлокерамическая технология обеспечивает при производстве деталей из этих сплавов меньше отходов вследствие отсутствия литейных дефектов, лучшей шлифуемости, большей механической прочности, однородности. При давлении спекания в чистом водороде 400—800 МПа при 1300° С металлокерамические магниты из железо-никель-алюминиепого сплава имеют плотность на 8—7% меньше, чем литые, и магнитные свойства, близкие к таковым у литых магнитов. Существуют два способа получения магнитов по металлокерамическому принципу.-В первом случае детали из смеси чистых порошков или их лигатуры прессуются в пресс-формах в два приема сначала при пониженных давлении и температуре, потом при полном давлении с последующим окончательным спеканием завершающей операцией является термическая или термомагнитная обработка. Второй способ заключается в изготовлении металлокерамических заготовок сутунок , из которых после термообработки и прокатки на полосы и  [c.310]

Плотность материала, кг/м , ориентировочно может приниматься для алюминиевых силавов () = 2,85-10 , сплавов на основе титана р == 4,5-10 , сталей мартенситпо-ферритного класса р = = 7,8-10 , сталей аустенитного класса р==8,05-10 никелевых силавов р = 8,45-10 .  [c.277]

В автоклаве через стопорное устройство в сухой песчаной форме диаметром и высотой 130 мм отливали алюминиевую пластину размерами ЮОХ ООХЮ мм. Материал формы-песчано-глинистая формовочная смесь, плотность формы 1660 кг/м [61]. Температуру отливки измеряли в центре и у поверхности, а температуру формы в пяти точках по сечению.  [c.50]

Это подтверждено Н. Н. Белоусовым и А. А. Додоно-вым [7], исследовавшими влияние поршневого давления в пределах 30—500 МН/м на образование усадочных дефектов в слитках (Z) = 130 мм, Н—300 мм) из алюминиевых сплавов АЛ2 и АЛ8. По их данным, для устранения усадочной пористости в осевой зоне слитка из сплава АЛ8 необходимо давление 120 МН/м . При изготовлении слитка из сплава АЛ2 под таким же давлением усадочная пористость в осевой части полностью не устраняется. Только при повышении давления более чем в два раза (до 250 МН/м ) достигается достаточная плотность по всему сечению слитка.  [c.96]

Ассортимент изоляционных материалов разнообразен. Многие из них носят специальные названия, например шлаковая вата, зоно-лит, асбозурит, асбослюда, ньювель, совелит и др. Шлаковая вата получается из шлака, который расплавляется и затем паровой струей разбрызгивается. Зонолит получается из вермикулита (сорт слюды) путем прокаливания его при температуре 700—800° С. Асбослюда представляет собой смесь асбеста и слюдяной мелочи. Совелит является продуктом химического производства. Широкое применение получила так называемая альфольевая изоляция. В качестве изоляции здесь используется воздух, и вся забота сводится к уменьшению коэффициента конвекции и снижению теплоотдачи излучением путем экранирования алюминиевой фольгой (см. рис. 6-11). Коэффициент теплопроводности материалов в сильной мере зависит от их пористости. Чем больше пористость, тем меньше значение эффективного коэффициента теплопроводности. О пористости материала можно судить по величине его плотности, с увеличением пористости плотность материала уменьшается.  [c.200]


Смотреть страницы где упоминается термин Алюминиевый Плотность : [c.579]    [c.590]    [c.594]    [c.519]    [c.28]    [c.133]    [c.121]    [c.36]    [c.46]    [c.59]    [c.335]    [c.184]    [c.202]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.212 , c.214 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте