Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристика гальванических процессов

ХАРАКТЕРИСТИКА ГАЛЬВАНИЧЕСКИХ ПРОЦЕССОВ Хромирование  [c.332]

Характеристика гальванических процессов  [c.333]

Характеристика гальванических процессов 343  [c.343]

Характеристика гальванических процессов 345  [c.345]

Характеристика гальванических процессов 347  [c.347]

Для различных гальванических процессов рекомендуется также применение ванн, техническая характеристика которых показана в табл. 3.3.  [c.76]

Гальванические покрытия деталей машин применяют как защитные, декоративные, износостойкие и технологические. Процесс нанесения покрытия состоит из операций подготовки поверхности перед покрытием, нанесения его и полирования (если нужно). Подготовка поверхности Деталей перед покрытием включает шлифование, полирование и обезжиривание. Гальваническое покрытие производят при напряжении 10 В и плотности тока до ЮА/дм . Характеристика гальванических покрытий приведена в табл. 15.  [c.209]


Протекторная и катодная защита основана в наложении отрицательного потенциала на поверхность металла, при котором значительно замедляется процесс его ионизации. В протекторной защите источником поляризующего тока является гальванический элемент, состоящий из защищаемой металлической конструкции и протектора, изготовленного из специального сплава, характеристика которых приведена в табл. 3.  [c.11]

Уравнения Гиббса—Гельмгольца в этом виде находят широкое применение в химической термодинамике. Они, в частности, позволяют определять такую важную характеристику химической реакции, как ее тепловой эффект, не путем прямых термохимических измерений, а косвенным образом — измеряя работу L в процессе, сопровождающемся этой химической реакцией, и вычисляя величину (dL /dT). Эти уравнения весьма важны и для анализа обратимых гальванических элементов.  [c.226]

Реальный металл, способный корродировать в данной среде, неизбежно содержит примеси других металлов, частью более благородных, чем основной металл. Эти примеси могут либо представлять собой отдельные фазы, либо приводить к образованию их в процессе коррозии. Поэтому поверхность металла рассматривается как своего рода инкрустация, состоящая из анодов (основной металл) и микроскопических катодов. Более благородные катоды и основной металл представляют собой серию многочисленных короткозамкнутых гальванических элементов. Между катодами и анодами существует определенная разность потенциалов, которая вызывает протекание электрических токов, заставляющих металл растворяться. Чем больше разность потенциалов между катодами и анодами, тем больше сила токов, текущих в местных элементах, тем больше, следовательно, скорость коррозии. Конечно, на поверхности металла необязательно должны находиться только два типа участков — аноды и катоды. Одновременное присутствие нескольких примесей приведет к образованию системы многоэлектродных элементов, характеризуемой наличием нескольких типов катодов и анодов, обла-, дающих различными потенциалами и поляризационными характеристиками.  [c.188]

Было показано, что такие металлы, как титан, хромистые и нержавеющие стали, будучи легированы небольшими добавками Р(1, Р1 (0,1—1,0%), легко переходят в пассивное состояние в условиях, где эти металлы без добавок активно растворяются (например, растворы Н28 04, НС1 и др.) [1—9]. Титан, который обладает высокой пассивируемостью в ряде сред, особенно интересен в этом отношении, поскольку его потенциал полной пассивации очень сильно смещен в отрицательную сторону, что особенно благоприятствует созданию сплавов с катодными добавками. Поскольку действие таких добавок связывается с их влиянием в основном на катодный процесс [2] и поскольку работу такой системы можно рассматривать как работу гальванической пары Т1 (анод) — легирующая добавка (катод), было интересно исследовать поведение титана в гальванических парах с чистыми катодными металлами, изучить и сравнить катодное поведение этих металлов, а также выявить роль различных катодных характеристик (перенапряжение водорода, предельный диффузионный ток по кислороду, перенапряжение ионизации кислорода, собственный стандартный потенциал добавки) в процессах пассивации титана в результате контакта с катодными металлами.  [c.292]


Для понижения коэрцитивной силы и повышения магнитной проницаемости железоникелевых сплавов обычно прибегают к термообработке. Термообработка гальванических покрытий может и не дать подобного эффекта вследствие возможной диффузии основного металла в покрытие и искажения магнитных характеристик сплава. Эти трудности можно преодолеть при нанесении магнитного покрытия на неметаллическую основу или на металлы с низким коэффициентом диффузии. При отжиге в водородной атмосфере удалось увеличить магнитную проницаемость железоникелевого покрытия, нанесенного а стекло с тонким подслоем меди и платины [248]. Прямоуголь-ность петли гистерезиса тонких железоникелевых сплавов можно улучшить наложением магнитного поля в процессе электролиза [249].  [c.71]

Внутренние напряжения, возникшие в результате обработки, ухудшают в большинстве случаев эти свойства. Далее при гальванической обработке необходимо учитывать возможные изменения структуры стали, вызванные термической обработкой (закалкой, цементацией, отпуском и др.), так как характеристики прочности гальванически обработанных материалов почти во всех случаях с повышением напряженности структурной решетки ухудшаются. Кроме перенапряжений структурной решетки, обусловленных термической обработкой, к внутренним напряжениям приводят также нарушения в строении материала, вызванные местными пороками, посторонними включениями и т. д. Изменение структуры материала может быть вызвано и механическими нагрузками от наклепа в процессе изготовления. Так, изготовленный с помощью холодной обработки корпус (например, отражатель прожектора) из относительно однородной а-ла-туни испытывает большие внутренние напряжения, вызванные растяжением его структурной решетки, которые отрицательно влияют на строение и технологические свойства покрытия. При напряженном режиме обработки также возникают внутренние напряжения, которые как по величине, так и по направленности мало изучены. При больших давлениях резания обрабатываемая поверхность подвергается холодной деформации и наклепу. Наклеп поверхности, происходящий при шлифовании с чрезмерно большой подачей, дополненный местным перегревом, приводит иногда к шлифовальным трещинам, вызванным неподдающимися учету нагрузками, и почти всегда вредно действует на последующую гальваническую обработку.  [c.153]

В гальваническом производстве для различных операций технологических процессов получения покрытий применяются растворимые и нерастворимые аноды. Основные характеристики растворимых анодов приведены в табл. 2.3, а нерастворимых в табл. 2.4.  [c.25]

При помощи этих методов получают математические модели технологических процессов, связывающие параметры оптимизации (характеристики наращенных слоев) с факторами. Этим определяются оптимальные условия восстановления изношенных деталей гальваническими способами.  [c.91]

Некоторые исследователи [114] предлагают вид ускоренных испытаний, в котором образцы присоединены к более благородному металлу (такому, как платина) в коррозионной среде, и токи, возникающие в этих гальванических элементах, используются для измерения относительного сопротивления коррозии изучаемого металла. Этот метод имеет недостатки других способов ускоренных испытаний в электролитах и, кроме того, значительное отклонение от обычного процесса коррозии вследствие различий между катодными поляризационными характеристиками более благородного металла, используемого как искусственный катод, и теми самыми характеристиками исследуемого металла, которые характерны для него в обычных условиях.  [c.562]

В брошюре приведены краткие сведения об основах процессов очистки поверхности различных металлов и сплавов как методе декоративной отделки и подготовки деталей перед нанесением гальванических и химических покрытий. Даны характеристики отдельных способов механической подготовки, обезжиривания, травления, химического и электрохимического полирования. Приведены схемы технологических процессов очистки и отделки деталей из различных материалов.  [c.2]


В отечественной промышленности применяется электрохимическое полирование труб, пружин, некоторых деталей, работающих в условиях трения, деталей электровакуумного производства. Этот процесс незаменим при обработке полупроводников, так как позволяет получить поверхность со стабильными электрофизическими характеристиками. Благодаря сочетанию электрополирования с последующим анодированием и адсорбционным окрашиванием получают имитацию отделки алюминиевых деталей под золото. Электрополированию подвергают сверла, хирургический инструмент, детали перед нанесением на них гальванических покрытий. В последнем случае повышается прочность сцепления покрытия с основным металлом, увеличивается стойкость против коррозии.  [c.88]

Кроме указанных характеристик, прибор позволяет определять скорость осаждения покрытия как изменение показаний прибора за единицу времени, а также выход по току. Метод непрерывного контроля толщины гальванических покрытий на деталях непосредственно в ванне в процессе ее работы заключается в непрерывной регистрации изменения толщины контрольной металлической пластинки,, происходящего за счет осаждения слоя покрытия.  [c.187]

В книге изложены методы контроля процессов и приемки гальванических, химических и лакокрасочных покрытий на металлах. Дано описание приборов и состав реактивов, необходимых при определении качества покрытий. Приведена методика определения, а также дана характеристика материалов и прои.э-водственных неполадок при выполнении технологии покрытия и указаны пути их устранения.  [c.2]

После указания о назначении того или иного вида покрытия разобрать электрохимические процессы, лежащие в основе гальванических процессов никелирования, цинкования, меднения, — и технологическую схему нанесения металлопокрытий остановиться на основных этапах работы, отметить разделение производственного процесса на отдельные фазы, дать при этом характеристику каждой отдельной операции и основному оборудованию, используемому при гальваностегических работах.  [c.40]

Полярность покрытия в значительной степени зависит от состава среды, и в процессе коррозии в результате поляризации или других факторов может произойти изменение полярности покрытия. Исследование алюминиевых покрытий различной толщины и пористости в жесткой промышленной атмосфере Москвы, отличающейся высоким содержанием сернистых газов, показало, что в пористом покрытии (10-12 мкм) очаги коррозионных поражений концентрируются в местах наличия пор и происходит значительное язвенное разрушение стали. Такой же характер разрушения был на образцах с тонким пористым алюминиевым покрытием, испытанных в районе Уфимского нефтеперерабатьшающего завода и Оренбургского ГПЗ, атмосфера которых отличается высоким содержанием Hj S и SO2. Толстые алюминиевые покрытия обнаруживали в этих условиях эффект намного выше, чем у цинковых той же толщины. Об этом свидетельствуют также сравнительные испытания, в промышленных атмосферах предприятий химической и нефтеперерабатьша-ющей промышленности алюминированной стали и цинковых покрытий, полученных различными методами и имеющими толщину слоя 50 мкм (из расплава), 25 мкм (гальваническое с хроматированием), 25 мкм (вакуумное), 100-120 мкм (термодиффузионное), 200-250 мкм (металлизационное). Характеристика промышленных атмосфер и скорость коррозии покрытий, полученных различными методами, приведена в табл.15.  [c.59]

Во втором издании (первое —в 1975 г.) рассмотрены новые технологические процессы газотермическое напыление алюминием, скоростные процессы гальванического осаждения цинкового и цинконикелевого покрытия на трубы и муфты, хромирование труб из паст и др. Освещены разрушающие и неразрушающие способы и приборы контроля толщины различных покрытий. Описаны вопросы хранения, складирования и транспортировки труб с металлическими покрытиями. Приведены эксплуатационные характеристики труб с металлическими покрытиями.  [c.58]

При нагреве покрытий фосфора диффундирует из них в основной металл, на границе которого образуется новая фаза, вероятно, фосфида железа Fe P. В процессе химического никелирования в осадок включается водород Следует отметить, что в покрытиях, полученных химическим способом, водорода в несколько раз меньше чем в гальванических покрытиях Содержание водорода возрастает с увеличением толщины покрытий, причем в покрытиях, полученных из кислых растворов, водорода на 50 % больше, чем в покрытиях из щелочных растворов Водород оказывает вредное влияние на прочностные характеристики никелированных изделий, лоэтому его надо удалять из осадков путем нагрева  [c.10]

В процессе нагрева в Со — В-покрытиях протекают необратимые структурно-фазовые превращения с выделением фазы борнда Со В в области температуры 215 °С и фазы С02В в области температур 425—460 °С Свойства химически восстановленных Со — В сплавов сильно отличаются как от гальванического кобальта, так и от сплавов Со—Р Это относится к таким свойствам, как твердость, износостойкость и магнитные характеристики  [c.63]

В связи с вводом в эксплуатацию мощных многоанодных с обожженными анодами электролизеров встал-вопрос об изучении взаимовлияния распределения токовой нагрузки по анодам и технологического состояния процесса электролиза алюминия. Работа была выполнена на ТадАЗе Казахским политехническим институтом совместно с ВАМИ. Исследования проводили на промышленных электролизерах на силу тока 162 и 167 кА с помощью 30-канальной измерительной системы К 484/2 с выводом информации на перфоратор. Измерялось падение напряжения на фиксирован ном участке анодной штанги, которое соответствует силе тока, протекающего по данному аноду. Сила тока серии и электрическое напряжение электролизера замерялись через гальванические разделители Е826 для защиты системы от попадания потенциала серии. Дискретность опрашивания входных сигналов составляла 0,1 с, и общее время измерения параметров одного электролизера -не превышало 2,5 с. Таким образом, можно считать измерение выполненным при постоянных значениях силы тока серии и рабочего напряжения ванны. Периодичность опроса определяли в зависимости от поставленной задачи. При исследовании нормального режима работы регистрацию производили через каждые 10 мин, при праведении технологических операций — непрерывно. На печать выводились единичные измерения, а также средние за определенный период времени (час, смена, сутки). Полученные на перфолентах результаты обрабатывали по. специальной программе на ЭВМ СМ-2. Для визуального контроля и изучения динамических характеристик отдельных анодов применяли самопишущие приборы типа Н-338 и КСП. Для количественной оценки равномерности токораспределения по анодам данного электролизера  [c.35]


Сообщая иоверхности эти свойства, гальванические покрытия в процессе ланесения на сталь в большей или меньшей степени ухудшают ее механические характеристики вследствие того, что одновременно с осаждением металла на катоде выделяется водород, который частично проникает внутрь покрываемого металла (металла основы как говорят в гальванотехнике) и заполняет внутренние коллекторы металла.  [c.255]

В книге рассмотрены вопросы получения и применения различных защитных жаростойких и злектроизоляционных покрытий для деталей и конструкций электропечей. Приведены экспериментальные и литературные данные о свойствах, структуре и эксплуатационных характеристиках диффузионных, стеклоэмалевых, металлокерамических и гальванических покрытий их назначение, области применения и перспективы внедрения в электропечестроение. В качестве примера описаны типовые технологические процессы алитирования деталей электропечей, а также экономическая эффективность создания участка алитирования на отраслевом заводе.  [c.2]

Толщина гальванического покрытия является одним нз наиболее важных параметров, определяющих его коррозиоииую стойкость, и поэтому измерение и контроль толщины являются операцией, общей для всех процессов электроосаждения, и входит во все технические условия, регламентирующие качество покрытия. В некоторых случаях толщина покрытия имеет функциональное значение, например, в случае наличия ограничения на допуск, как это имеет место для изделий с винтовой резьбой. Однако в большинстве случаев именно связь с коррозионной стойкостью покрытия делает толщину важной характеристикой.  [c.348]

Этап контроля качества. В компаниях создавали бригады контролеров для испытания продукции, сравнения ее характеристик с устаповлеппыми требованиями (техническими условиями) и разбраковки [9]. Хорошая продукция, естественно, поступала на склад и далее к потребителю. Плохая продукция либо признавалась окончательным браком и уничтожалась, либо признавалась не окончательным браком и ее переделывали (ремонтировали), если падо снижали класс качества, а затем реализовывали по более низкой цене. Если была возможность, то продукцию, призпаппую окончательным браком, старались хотя бы частично использовать. Например, если готовые поршневые кольца не прошли приемочный (выходной) контроль, а они уже нрошли процесс хромирования, то с них можно снять слой хрома гальваническим путем (если это экономически целесообразно, то это надо делать).  [c.18]


Смотреть страницы где упоминается термин Характеристика гальванических процессов : [c.229]    [c.195]    [c.163]    [c.336]   
Смотреть главы в:

Технологичность конструкций  -> Характеристика гальванических процессов



ПОИСК



Гальванические процессы

Гальванический цех

Процесс Характеристика



© 2025 Mash-xxl.info Реклама на сайте