Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функция Лагранжа. Функция Лагранжа для релятивистской частицы

Функция Лагранжа релятивистской частицы с массой по-  [c.115]

Отметим также некоторые другие обстоятельства изучения движения релятивистских частиц методами теоретической механики. Ограничение скорости релятивистской частицы не позволяет считать её свободной по определению ограничение величины скорости представляет собой неголономную связь в пространстве-времени (другое дело, что пока не вполне ясно, как она реализуется). Известно, что при выводе уравнений движения условие неголономной связи не должно быть использовано в функции Лагранжа, как это было сделано в (15). Эта связь неидеальная в уравнении движения релятивистской частицы [78] в составе сил имеется слагаемое, противоположное скорости.  [c.263]


Понятие натуральная система по своему смысловому содержанию является более широким, чем приведённое выше. К натуральным системам естественно относить любые динамические системы, аксиоматика которых имеет научные физические основания. Тогда, например, релятивистская частица, описываемая функцией Лагранжа (коэффициент при сИ в формуле (38.15)), не будет считаться ненатуральной на том лишь основании, что выражение функции Ь не является полиномом второй степени относительно скорости. Системы с функцией Лагранжа вида (5) далее будем называть системами с евклидовым действием.  [c.130]

Функция Лагранжа свободной релятивистской частицы с массой покоя шо имеет вид  [c.116]

Энергия и импульс свободной частицы. Рассмотрим свободную от связей и изолированную от внешних полей частицу. (Так как механические связи в релятивистской динамике не рассматривают, терминологию часто упрощают и называют свободную изолированную частицу просто свободной частицей.) Найдем для нее функцию Лагранжа.  [c.267]

Независимость функций Лагранжа от времени, обусловленная однородностью времени, приводит, как это показано в 22 части 1, к сохранению релятивистской энергии системы невзаимодействующих частиц  [c.269]

Функция Лагранжа. Функция Лагранжа для релятивистской частицы  [c.220]

В качестве примера неклассической системы рассмотрим частицу, скорость которой сравнима со скоростью света — релятивистскую частицу. Положение частицы определим декартовыми координатами, полагая qj = x, q2 = y, q = z. Функция Лагранжа ) будет иметь вид  [c.222]

Обратимся к примеру, рассмотренному в 10. Функция Лагранжа для релятивистской частицы имела вид  [c.228]

В главе 6 указывалось, что первый член ковариантного релятивистского лагранжиана (6.57) является в некоторой степени произвольным. Другая возможная форма лагранжиана получается, если преобразовать принцип Гамильтона (6.48) (перейдя от времени i к местному времени т, являющемуся инвариантом Лоренца) и использовать. новую подынтегральную функцию в качестве L. Получить таким путем выражение для ковариантного гамильтониана частицы, находящейся в электромагнитном поле. Показать, что значение этого гамильтониана равно нулю. (При получении уравнений движения значение гамильтониана, конечно, не существенно, так как нас интересует только его функциональная зависимость от координат и импульсов.)  [c.261]

Иногда оказывается чрезвычайно выгодным превратить время t в механическую переменную. Вместо того чтобы считать позиционные координаты qi функциями времени t, координаты qi и время t рассматриваются как функции некоторого произвольного параметра т. Лагранж в подобных случаях считал, что пространство конфигураций для одной частицы превращается из пространства трех в пространство четырех измерений. В релятивистской механике этот переход абсолютно необходим, так как пространство и время объединяются там в один четырехмерный континуум Эйнштейна—Минковского.  [c.216]


Релятивистской динамике принадлежат соотношения между динамическими характеристиками свободной частицы и законы сохранения. Кроме того, здесь изучается хотя и не общий, но важный частный случай взаимодействия тел и полей, при котором индивидуальность частиц — масса покоя — сохраняется, а в результате взаимодействия при движении изменяются импульс и энергия, положение в пространстве. Этот случай называется квазирелятивист-ским и укладывается при внесении релятивистских поправок в рамки основной задачи механики. Поэтому в курсе изучается релятивистское обобщение основного уравнения динамики. Релятивистскими обобщениями определяются в данном разделе курса функции Лагранжа, Гамильтона.  [c.245]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

Плотность лагранжиана, являющаяся функцией координат и скоростей, есть релятивистски инвариантная функция, т. е. с ее помощью можно описывать частицы, движущиеся даже со скоростями, близкими к скорости света. Лагранжиан при заданных начальных условиях полностью определяет поведение системы во времени, т. е. динамику системы.  [c.12]

Именно эта возможность и была реализована в 1911 г. Г. Герглотцем , который принял активное участие в разработке релятивистской механики сплошной среды и на этом пути впервые явно получил взаимосвязь Р-сим-метрия — сохранение . Вариационная структура уравнений механики сплошной среды была известна и широко использовалась, начиная с середины XIX в. (Гельмгольц, Кирхгоф, Рэлей, А. Вальтер и др.) . Вариационные принципы в релятивистской форме за пределами электродинамики были сформулированы и широко использованы, прежде всего, Планком, а затем Минковским и др. (механика точки и системы, термодинамика и т. д. ). Поэтому построение релятивистской механики сплошной среды естественно было начать с Р-инвариантного вариационного принципа, переходящего в нерелятивистском случае в соответствующий вариационный принцип классической механики. Герглотц начинает с описания среды в переменных Лагранжа, т. е. рассматривая координаты частиц среды и характеристики движения как функции начальных координат и времени t. Элемент мировой линии двух соседних мировых точек при таком описании выражается посредством квадратичной формы дифференциалов начальных координат и собственного времени = i x  [c.243]



Смотреть страницы где упоминается термин Функция Лагранжа. Функция Лагранжа для релятивистской частицы : [c.217]    [c.262]   
Смотреть главы в:

Теоретическая механика  -> Функция Лагранжа. Функция Лагранжа для релятивистской частицы



ПОИСК



Релятивистская функция Лагранж

Функция Лагранжа

Частица релятивистская



© 2025 Mash-xxl.info Реклама на сайте