Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сингулярно возмущенные дифференциальные уравнения

Легко видеть, что обычная теория возмущений к этой задаче не применима, так как член, учитывающий вязкость vV u, в уравнении (3) имеет самый большой порядок и, следовательно, возмущение вязкости V относительно значения v = О есть сингулярное возмущение ). Тип уравнений в частных производных обычно определяется членами наивысшего порядка. Таким образом, пренебрежение членами высшего порядка ведет к стиранию различий между типами уравнений. Даже для обыкновенных дифференциальных уравнений такого вида, как гу" -f i/ = О, с краевыми условиями у(0)—а,у( )=Ь, мы получаем в пределе совершенно различные картины в зависимости от того, положить ли e-i- + О или е-4— 0.  [c.61]


Заметим, что основное содержание методов малого параметра [34] и асимптотических методов [20] может трактоваться как исследование специфических бифуркаций и возмущений. Так, теория периодических движений Пуанкаре решает вопрос о рождении периодических движений от семейств периодических движений, теория квазилинейных систем с быстровращающимися фазами — вопрос о рождении интегральных тороидальных многообразий от многопараметрических семейств тороидальных многообразий, теория дифференциальных уравнений с малыми параметрами при старших производных исследует сингулярные возмущения решений дифференциальных уравнений и т. д.  [c.267]

Теория возмущений занимает центральное место среди приближенных методов интегрирования дифференциальных уравнений. Однако в задачах с малым параметром е при старшей производной сколь угодно малые изменения параметра приводят к конечным приращениям решения. При в=0 понижается порядок уравнения. Различие фазовых траекторий исходной и вырожденной систем существенно усложняет получение приближенных решений. Сингулярные уравнения встречаются в механике, релятивистской теории поля и в основном теориях движения плазмы, жидкости и газа.  [c.331]

Звонкий А. К Шубин М. А., Нестандартный анализ и сингулярные возмущения обыкновенных дифференциальных уравнений. Успехи мат. наук, 1984, 39, вып. 2, 77—127  [c.213]

Технику граничных элементов можно пояснить более полно, если воспользоваться рис. 1.2. Рис. 1.2 (а) представляет область R, ограниченную контуром С, — это тот же тип краевой задачи, который обсуждался выше в связи с рис. 1.1. Рис. 1.2 (Ь) представляет бесконечную плоскость, а пунктирная линия С отмечает след контура С на этой плоскости. Зачастую легче находить аналитические решения соответствующих дифференциальных уравнений для неограниченной области (рис. 1.2 (Ь)), чем для фактической области R (рис. 1.2 (а)). В частности, мы в состоянии найти сингулярное решение для точечного возмущения (например, источника, стока или сосредоточенной силы) в некоторой точке р в бесконечной области. Предположим на момент, что это сингулярное решение воспроизводит на пунктирной линии С точно те условия, какие заданы на границе С (рис. 1.2 (а)). Если бы  [c.11]

Всякий раз, когда в исследуемом уравнении, описывающем состояние какой-либо динамической системы, присутствует малый числовой параметр > О, возникает задача об асимптотическом (при 0) поведении ее состояния. Наличие малого параметра в правых частях дифференциальных уравнений, в возмущающих воздействиях, при старших производных в левых частях уравнений стимулировало в разное время острый интерес и бурное развитие важных разделов теории теории возмущений и разложения решений в ряд по степеням малого параметра, принципа усреднения, теории сингулярных уравнений и т.д. Разумеется, присутствие малого параметра в уравнениях и необходимость рассмотрения асимптотических задач диктуются, прежде всего, обилием возникающих реальных ситуаций, множеством практических примеров, связанных с наличием малого параметра.  [c.387]


В монографии излагаются асимптотические методы решения широкого класса задач оптимального управления, содержащих малые па-раметры. Регулярно и сингулярно возмущенные задачи исследуются с помощью единого подхода, который опирается, с одной стороны, на фундаментальный результат теории оптимальных процессов - принцип максимума Л. С. Понтрягина, а, с другой, - на асимптотические методы теории дифференциальных уравнений.  [c.5]

Монография состоит из четырех глав. В первой главе приводятся сведения из теории обыкновенных дифференциальных уравнений и теории оптимальных процессов, которые непосредственно используются в дальнейшем, уточняется, что будет пониматься под асимптотическими приближениями к решениям рассматриваемых возмущенных задач, и описывается методика исследования. Во второй главе излагаются алгоритмы асимптотического решения регулярно возмущенных задач оптимального управления, а третья глава посвящена исследованию задач оптимизации сингулярно возмущенных систем. Наконец, в четвертой главе рассмотрены задачи оптимального управления, динамические системы в которых сами по себе не являются возмущенными. В этих задачах малый параметр присутствует при описании класса управляющих воздействий.  [c.5]

Наиболее распространенный подход к исследованию задач оптимального управления, содержащих малые параметры, состоит в применении методов асимптотического разложения решений возмущенных дифференциальных уравнений к краевой задаче принципа максимума (см., например, [11, 36, 72, 77, 82, 97, 98, 127, 129]). Такая методика позволяет строить асимптотику решения задач с открытой областью управления и гладкими управляющими воздействиями, т. е, задач классического вариационного типа. В задачах современной теории оптимального управления, имеющих прямые ограничения на значения управляющих воздействий в виде замкнутых неравенств, реализация указанного подхода встречает серьезные трудности, поскольку динамические уравнения краевой задачи принципа максимума не обладают необходимой для применения асимптотических методов гл остью. Наверное, поэтому в данном случае исследования, в основном, сводились лишь к выяснению вопроса о предельной задаче, к решению которой в той или иной топологии сходится решение возмущенной задачи при стремлении малого параметра к нулю. Что касается построения асимптотики решения в задачах с замкнутыми множествами допустимых значений управляющих воздействий, то имеющиеся здесь результаты еще далеки от того уровня, который мог бы удовлетворить запросы практики. В первую очередь, это относится к нелинейным сингулярно возмущенным задачам, для которых вопрос о построении асимптотических приближений к оптимальным управлениям за редкими исключениями остается открытым.  [c.7]

Здесь не рассматривается случай так называемых сингулярных возмущений, когда дифференциальные уравнения содержат малый параметр ирн вронзводных  [c.52]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


Это наводит на мысль о двух типах методов возмущений один для Кп О, другой для Кп оо. Последний мы кратко обсудим позже ( 3 гл. 8), а первый будет предметом ближайшего рассмотрения. Можно ояшдать, что разложение по малому параметру для Кп -> О позволит завершить задачу, начатую в 3 гл. 2, т. е. доказать, что в случае плотного газа макроскопическое юписание возможно, и определить пределы его применимости. Ясно, что подобный переход от микроскопического описания к макроскопическому должен быть очень сингулярным, так как он основан на замене интегро-дифференциального уравнения для одной неизвестной, зависящей от 7 переменных, системой дифференциальных уравнений для 5 неизвестных, зависящих от 4 переменных.  [c.116]

В случае радиально неограниченного пространства описанная выше процедура становится несправедливой в силу появления сингулярностей. Поэтому используется другой подход [Leibovi h, 1970]. Предполагается, что завихренность сосредоточена в ядре вихря, а вдали от ядра течение потенциальное. Возмущения полагаются осесимметричными и длинными. Ищутся решения отдельно для внутренней и внешней областей с применением метода асимптотического сращивания и с соответствующими граничными условиями. В результате вьшедено интегро-дифференциальное уравнение  [c.235]

Оказывается, уравнения доопределенной таким образом системы можно привести к сингулярно возмущенному, тихоновскому, виду. Это позволяет воспользоваться эффективным формализмом теории сингулярных возмущений [10, 11 Рассмотрим систему дифференциальных уравнений  [c.187]

Причина этого явления может быть объяснена с двух различных точек зрения. Во-первых, подобные неэкспоненциальные асимптотические решения лежат на центральных многообразиях, которые в большинстве случаев не аналитичны. Во-вторых, вводя некоторый малый параметр (соответствующий квазиоднородной шкале, ассоциированной с первыми нетривиальными членами построенных рядов) в рассматриваемую систему, мы можем получить сингулярно возмущенную систему, теряющую некоторые производные при обнулении малого параметра. В любом случае явление подобного рода связано с взаимодействием переменных, отвечающих 13 нулевым и ненулевым корням характеристического уравнения. Получаемые ряды являются асимптотическими рядами для требуемых частных решений, но прямое использование техники абстрактной теоремы о неявной функции в данной ситуации невозможно. Для доказательства факта асимптотичности построенных рядов необходимо применять теорию, принадлежащую А.П. Кузнецову [14, 15]. Грубо говоря, эта теория утверждает, что если гладкая система дифференциальных уравнений обладает формальным решением в виде рядов (10), то она обладает настоящим гладким решением для которого (10) дает асимптотическое разложение.  [c.102]


Смотреть страницы где упоминается термин Сингулярно возмущенные дифференциальные уравнения : [c.213]    [c.196]    [c.6]    [c.120]    [c.10]    [c.561]    [c.561]    [c.135]    [c.140]   
Смотреть главы в:

Асимптотические методы оптимизации возмущенных динамических систем  -> Сингулярно возмущенные дифференциальные уравнения



ПОИСК



Сингулярно-возмущенные уравнения

Сингулярность



© 2025 Mash-xxl.info Реклама на сайте