Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитные материалы с малой коэрцитивной силой

Магнитные материалы с малой коэрцитивной силой  [c.286]

В электромашиностроении часто бывает необходимо достигнуть максимальной магнитной индукции при минимальном расходе энергии. Для этой цели применяют материалы с малой коэрцитивной силой, малыми потерями на гистерезис и с большой магнитной проницаемостью. Из них изготовляют магнито-проводы электрических машин, сердечники трансформаторов, электромагнитов, электроизмерительных приборов . Химический состав магнитно-мягких сталей — малоуглеродистых кремнистых—указан в табл. 41.  [c.334]


Коэрцитивная сила и форма петли гистерезиса характеризуют свойство ферромагнетика сохранять остаточное намагничивание и определяют использование ферромагнетиков для различных целей. Ферромагнетики с широкой петлей гистерезиса называются жесткими магнитными материалами (углеродистые, вольфрамовые, хромовые, алюминиево-никелевые и другие стали). Они обладают большой коэрцитивной силой и используются для создания постоянных магнитов различной формы (полосовых, подковообразных, магнитных стрелок). К мягким магнитным материалам, обладающим малой коэрцитивной силой и узкой петлей гистерезиса, относятся железо, сплавы железа с никелем. Эти материалы используются для изготовления сердечников трансформаторов, генераторов и других устройств, по условиям работы которых происходит перемагничивание в переменных магнитных полях. Перемагничивание ферромагнетика связано с поворотом областей самопроизвольного намагничивания (п. 8°). Работа, необходимая для этого, совершается за счет энергии внешнего магнитного поля (П1.5.7.2°). Количество теплоты, выделяющейся при пере-магничивании, пропорционально площади петли гистерезиса.  [c.283]

Материалы с малым значением Не и большой магнитной проницаемостью называются магнитомягкими материалами. Материалы с большой коэрцитивной силой и сравнительной малой проницаемостью называются магнитотвердыми материалами.  [c.271]

Первое десятилетие XX в. ознаменовалось существенными усовершенствованиями электрических машин. В эти годы развернулись научные исследования физических процессов в электромагнитных механизмах [4]. Качество электрических машин удалось заметно повысить с получением новых ферромагнитных сплавов, идущих на изготовление остова. Например, в Германии были получены сплавы, отличавшиеся большой магнитной проницаемостью и малой коэрцитивной силой, что обеспечивало незначительные потери энергии в железе. Уточненные методы расчета, освоение рациональной технологии обработки деталей и разработка эффективных конструктивных форм также содействовали успеху. Все эти меры вели к уменьшению веса и снижению стоимости двигателей. Особенно сильно подешевели мелкие двигатели. По данным немецкого проф. Кюб-лера, цена двигателя переменного тока мощностью 1 л. с. упала с 450 марок в 1900 г. до 160 марок в 1908 г. Снижение цен прямо зависело от усовершенствования электродвигателей за это же время затрата материалов на изготовление асинхронных двигателей сократилась более чем в два раза. Заметно уменьшился и вес машин постоянного тока со второй половины 80-х годов XIX в. до 1912 г. вес электродвигателей снизился в 3,5 раза [3, с. 85—87].  [c.69]


Никель-цинковые ферриты имеют ряд недостатков. Материалы с высокой магнитной проницаемостью и малой коэрцитивной силой отличаются сильной зависимостью проницаемости от температуры и напряженности поля, а также низкой температурой Кюри. Граничная частота использования материалов с большой проницаемостью также не высока — в пределах 100 кгц. В основном никель-  [c.39]

Материалы с очень малым значением Яд (менее 0,1 э) и большой величиной магнитной проницаемости называются магнитно мягкими материалами. Материалы с большой коэрцитивной силой (более 100 э) называют магнитнотвердыми материалами.  [c.290]

Площадь петли магн. Г. пропорц. энергии, теряемой в образце. за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потерн энергии наз. гистерезисными. В тех случаях, когда потери на Г. нежелательны (напр., в сердечниках трансформаторов, в статорах и роторах электрич. машин), применяют магнитно-мягкие материалы, обладающие малыми значениями Не и площади петли Г. Для изготовления магнитов постоянных применяют жёсткие магн. материалы с большой коэрцитивной силой.  [c.128]

При намагничивании ферритов (как и ферромагнетиков) происходит смещение границ между доменами и вращение векторов намагниченности каждого домена. В слабых полях у большинства ферритов с малой анизотропией преобладают процессы смещения границ. Для лёгкого смещения границ доменов необходимо, чтобы энергия закрепления границ бьша минимальной. В этом случае проницаемость феррита будет максимальной. Однородные, совершенные в магнитном отношении чистые образцы ферритов характеризуются высоким значением начальной проницаемости и весьма малой коэрцитивной силой. Такие материалы, называемые магнитомягкими, широко применяются в телефонии и радиочастотной аппаратуре. Основными их характеристиками являются величина начальной проницаемости, ее частотная зависимость (магнитный спектр вещества), а также параметр потерь — тангенс угла магнитных потерь.  [c.38]

Из магнитно-мягких сплавов изготавливают электромагниты, магнитопро-воды электрических машин, трансформаторов, электрических приборов и аппаратов. Основные требования, предъявляемые к магнитно-мягким материалам, г низкая коэрцитивная сила (узкая петля гистерезиса), высокая магнитная проницаемость, высокая индукция насыщения, малые потери на вихревые токи и пере-магничивание. Низкие значения и высокая магнитная проницаемость ц достигаются в ферромагнетиках при однофазной близкой к равновесию структуре с минимумом внутренних напряжений.  [c.128]

Магнитномягкие материалы. Для сплавов этой группы характерны малая коэрцитивная сила Яс, высокая магнитная проницаемость ц и узкая петля гистерезиса (рис. 162, а). Кроме того, если они работают в условиях переменного намагничивания, к ним предъявляют требования относительно обеспечения минимальных энергетических потерь при перемагничивании. Эти сплавы должны иметь высокое удельное электросопротивление, с увеличением которого уменьшаются потери на паразитные вихревые токи.  [c.350]

Магнитно-мягкие материалы отличаются малыми потерями на гистерезис (узкая гистерезисная петля). Они обладают относительно большими значениями магнитной проницаемости, малой коэрцитивной силой и относительно большой индукцией насыщения. Магнитномягкие материалы применяются для изготовления магнитопроводов трансформаторов, электрических машин и аппаратов, магнитных экранов и др., где требуется быстрое намагничивание с малыми потерями энергии.  [c.277]

Для магнитно-твердых материалов с относительно небольшой коэрцитивной силой по намагниченности H J (литые МТМ) расхождение величин Нс],и Нсв практически мало. Поэтому построение рабочих диаграмм систем с постоянными магнитами проводится в системе координат В, Н [13].  [c.226]

Магнитомягкие материалы способны намагничиваться до насыщения в слабых полях, обладают высокой магнитной проницаемостью, малыми потерями на перемагничивание и низкой коэрцитивной силой. Условно к магнитомягким относят материалы с Яд < 4 А/м. Примеры магнитомягких материалов — технически чистое железо, различные синтезированные ферриты.  [c.163]


Магнитномягкие стали и сплавы предназначены для изготовления деталей, подвергаемых переменному намагничиванию, например сердечников трансформаторов, электромагнитов, статоров и роторов электродвигателей. Они способны к хорошему намагничиванию даже в слабых магнитных полях, т.е. имеют малое значение коэрцитивной силы. Эти материалы должны иметь однородную структуру с минимальным количеством примесей и включений.  [c.183]

Магнитно-мягкие стали используются для работы в переменных полях, т. е. в условиях непрерывного перемагничивания. Магнитно-мягкие материалы должны иметь малое значение коэрцитивной силы и высокую магнитную проницаемость. Из них изготовляют сердечники. магнитных устройств, магнитопроводы. Для этой цели широко применяют низкоуглеродистые стали с добавлением кремния 1—5 %.  [c.217]

В устройствах для сигнализации предохранительное устройство, представляющее собой удлиненную полоску из ферромагнитного материала с высокой магнитной проницаемостью, вьшолняется из аморфных сплавов с нулевой магнитострикцией, пологой или квадратной петлей гистерезиса и малым значением коэрцитивной силы. Эти материалы наиболее подходят для этой задачи, так как уже при малых возбуждениях дают гармоники более высокого порядка, чем любой другой материал. На магнитные свойства подобного устройства не влияют механические напряжения, могущие возникать в процессе его производства или работы.  [c.610]

Мягкие магнитные материалы (с малой коэрцитивной силой) железо в в слитке, кремнистые стали, железо-никельные и железоникель-кобаль-товые сплавы с добавкой молибдена, хрома и т. д.  [c.22]

Магнитопровод изготовляют из отдельных листов для аппаратов, работающих на переменном токе, либо универсальных. Затем по кривой В = f (Я> находят Н в зависимости от выбранного материала магнитопровода. Для изготовления магнитопроводов электромагнитов постоянного и переменного тока применяют магнитомягкие низкоуглеродистые материалы низкоуглеродистые тонколистовые отожженные стали Э, ЭА, ЭАА кремнистые стали ЭП, Э21, Э31 и т. д. У электромагнитов средних размеров при отсутствии жестких требований к снижению коэрцитивной силы и высокой магнитной проницаемости детали магнитопровода изготовляют из конструкционной низкоуглеродистой стали 05, 08, 10. Для магнитопроводов регуляторов применяют материалы с малой коэрцитивной силой — кремнистые электротехнические стали (ЭЗЗО, Э320, Э44, Э340 и др.). Падение м. д. с. на участке магнитопровода = = Яд/. При предварительных расчетах, когда Ф неизвестно, значением индукции можно задаться, приняв ее 4—10 Тл.  [c.110]

В силу изложенного в качестве материала для электромагнитов, работающих в переменных полях, применяют те, которые имеют узкие петли гистерезиса, что связано с малой коэрцитивной силой. Такие материалы называют магнитомягкими, они отличаются малым запасом магнитной энергии, способностью легко перемагничиваться и размагничиваться, высокой магнитной проницаемостью в слабых и средних полях. В отличие от них материалы с широкой петлей гистерезиса, с большой коэрцитивной силой отличаются большим запа.сом магнитной энергии и устойчивым намагничиванием. Их называют магнитотвердыми и применяют для изготовления постоянных магнитов.  [c.292]

Магнитные и электрические свойства. Ферритный и перлитный ЧШГ являются ферромагнитными материалами, а ЧШГ с аустенитной структурой - паромагнитным матфиалом. Поэтому ферритные и перлитные ЧШГ применяются для отливок, работающих в магнитном поле и обладающих высоким значением магнитной индукции (В), высокой магнитной проницаемостью (ц), малой коэрцитивной силой и незначительной остаточной магнитной индукхщей [В .  [c.573]

Сплавы прецизионные магнитно-мягкие — это ферромагнитные сплавы, характеризующиеся узкой петлей гистерезиса, они обладают высокой магнитной проницаемостью и малой коэрцитивной силой. Условно считается, что она не превышает 1000—1200 А/м. Сплавы используют в качестве сердечников магнитопроводов, а также магнитных экранов аппаратуры радиосвязи, радиолокации, автоматики и др. По основным магнитным, электрическим, механическим свойствам прецизионные магнитно-мягкие сплавы подразделяют на 12 фупп [195] сплавы с наивысшей магнитной проницаемостью в слабых полях сплавы с высокой магнитной проницаемостью и повышенным удельным электрическим сопротивлением сплавы с высокой магнитной проницаемостью и повышенной индукцией насыщения сплавы с прямоугольной петлей гистерезиса сплавы с высокой индукцией насыщения сплавы с низкой остаточной индукцией сплавы с повышенной деформационной стабильностью и износостойкостью сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР) сплавы с высокой коррозионной стойкостью сплавы с высокой магнитострик-цией термомагнитные сплавы и материалы сплавы для работы на сверхвысоких частотах. Магнитные свойства магнитно-мягких сплавов определяются химическим составом, структурой и текстурой сплава после окончательной термической обработки. Некоторые свойства (намагниченность насыщения, температура Кюри) сравнительно слабо изменяются при небольших изменениях состава и обычно не зависят от условий изготовления и термической обработки. Другие характеристики, такие как проницаемость, коэрцитивная сила, потери на гистерезис, сильно зависят от этих факторов. Поэтому нормируемые ГОСТом и техническими условиями свойства  [c.548]


Наконец, в однородном изотропном аморфном сплаве должна отсутствовать макроскопическая магнитная анизотропия. Однако за счет спин-орбитальных взаимодействий и различного типа неоднородностей в аморфных магнетиках все же возникает случайная анизотропия. Нередко она оказывается слабой, и в этоА1 случае низкие значения магнитной анизотропии приводят к легкости перемагничивания аморфных сплавов. В связи с этим многие аморфные магнетики относятся к классу обладающих особой мякостью магнитно-мягких материалов. Так, типичные коэрцитивные силы этих материалов 0,01—0,2 Э, что значительно меньше соответствующих значений для кристаллических сплавов, причем магнитное насыщение достигается в полях —200 Э. Петля гистерезиса мала и имеет прямоугольную форму, вытянутую вдоль оси  [c.290]

Платина — кобальт. Платина с кобальтом образует непрерывный ряд твердых растворов. Минимум кривой плавкости соответствует примерно 50% Со при 1450° С (фиг. 26). При охлаждении неупорядоченного твердого раствора с кубической гранецентрированной решеткой в области 10—30% весовых Со наблюдается образование неупорядоченной фазы с тетрагональной гранецентрированной решеткой.. Максимум температуры перехода 825° С соответствует составу соединения Pt o (23,18% Со). При дальнейшем охлаждении ниже 510° С происходит упорядочение этой фазы. В сплавах, содержащих более 70% весовых Со, при охлаждении ниже 600—400° С образуется твердый раствор с гексагональной плотиоупакованной решеткой на основе а-кобальта. Температура магнитного превращения кобальта 1115° С плавно падает с увеличением содержания платины. Сплав с 23,2% Со, закале1И1ый с 1000°С, имеет коэрцитивную силу 0,5 э и является магнитномягким материалом. После отпуска в течение 30 мин. при 650° С коэрцитивная сила возрастает до 2000 э, а после отпуска при 700° С — до 3700 э. Сплав с 23,2% Со применяется для постоянных магнитов малогабаритных инструментов. Сплавы, содержащие малые количества Со и Rh, применяются в качестве катализатора при окислении аммиака.  [c.415]

М а г н и т н о 0 Э. применяется для защиты приборов от внешнего магн. поля илн для защиты чаете приборов от взаимного влияния (при постоянном магнитном поле илп токах низкой частоты). Экраны делаются из ферромагнитных материалов с вы-сокс11. магн. проницаемостью [х, низкой остаточной индукцией и малой коэрцитивной силой Н .. Нла-годаря высоким значениям внешний магн. ноток проходит, в основном, по стенкам экрана и лишь не-больн1ая часть его проходит через пространство внутри экрана. Эффективность экрана определяется ого коэфф. Э.. 4 - отношонием к наиряженности поля в пространстве, защищаемом экраном.  [c.439]

Общие требования, предъявляемые к магнитомягким материалам — это высокие значения магнитной проницаемости и индукции по возможности, малые потери на гистерезис, токи Фуко и низкая коэрцитивная сила. Для получения таких свойств ферромагнитный материал должен иметь гомогенную структуру (чистый металл или твердый раствор) с возможно низким содержанием включений и примесей, Материал должен иметь рекристаллизован-ную структуру, Т. е. минимальные внутренние напряжения. По своим свойствам и назначению материалы этого класса сплавов могут существенно различаться, например, для изготовления реле и трансформаторов применяют электротехническое железо, динамную и трансформаторную сталь для изготовления трансформаторов тока используют сплавы пермаллойной группы. К этому классу материалов относятся также сплавы перминварной группы и сплавы с высокой намагниченностью насыщения. Магнитомягкие ферромагнитные материалы в приборостроении классифицируются по свойствам и применению следующим образом  [c.130]

Теории, объясняющие высококоэрцитивное достояние, можно разделить на две группы. Первая, наиболее обширная и разработанная группа теоретических представлений, основана на анализе факторов, влияющих на смещение междоменной границы, согласно которым движение доменной границы определяет гистерезисные свойства магнитных материалов. Позднее эти представления были уточнены. На основе подробного анализа была показана связь между коэрцитивной силой и дислокационной структурой материала. Однако основным недостатком этих теорий тляется то, что они не дают количественного соответствия с экспериментом в случае высококоэрцитивного состояния сплава. Вторая группа теоретических представлений основана на анализе факторов, влияющих на процессы вращения спинов в малых сильно магнитных частицах, которые существуют как отдельные образования в порошковых материалах и как выделения в.гетерогенных спяавах.  [c.204]

Магннтомягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи а трансформаторах используют магнитомягкие материалы с повышенным удельным электрическим сопротивлением, обычно приме-4ЯЮТСЯ магнитопроБоды, собранные из отдельных изолированных фуг от друга тонких листов.  [c.275]

Технически чистым называют железо, содержащее не более 0,04 % С. Оно обладает высокими магнитной проницаемостью и индукцией насыщения и низкой коэрцитивной силой. По причине малого удельного электрического сопротивления технически чистое железо обладает повьпиенными потерями на вихревые токи и находит применение только в устройствах постоянного тока (полюсные наконечники электромагнитов, магнитопроводы реле, полюсные наконечники, сердечники и экранирующие корпуса измерительных приборов магнитоэлектрической и электромагнитной систем). Технически чистое железо является основным компонентом при изготовлении многих магнитных материалов. Промышленностью оно выпускается в виде электролитического железа, железа Армко (кипящая низкоуглеродистая  [c.130]

Магнитно-мягкими являются ферромагнитные материалы (чистое железо и его сплавы с кремнием, никелем, кобальтом или алюминием, кремнием и алюминием, хромом и алюминием), отличительными чертами которых являются высокая магнитная проницаемость, низкая коэрцитивная сила (Н от десятых долей до 100- 150 А/м), малые потери на вихревые токи при перемагничивании, узкая и высокая петля гистерезиса, сравнительно большое электрическое сопротивление. Такие материалы быстро намагничиваются в магнитном поле, но так же быстро теряют свои магнитные свойства при его снятии. Свойства магнитно-мягких материалов сильно зависят от наличия дефектов, создаваемых загрязнениями, внутренними напряжениями и искажениями кристаллической решетки используемых металлов и сплавов. Примеси серы, фосфора, кремния и марганца, от которых не удается освободить литое железо даже при его вакуумной переплавке, существенно увеличивают потери на гистерезис. Использование высокочистых карбонильных или электролитических порошков железа и особенно его сплавов с никелем или кобальтом позволяет получать магнитные материалы, более точные по составу и с лучшими свойствами. Весьма эффективно производство спеченных магнитов из трудноде-формируемых сплавов например, при прокатке порошков в ленту толщиной до 30 мкм обеспечивается выход годного до 95 %, тогда как в случае получения такой же ленты из литого металла - 40 %.  [c.207]


Для магнитомягких материалов, основные требования к которым заключаются в минимальном значении Д и высоких значениях начальной, а также максимальной магнитной проницаемости ц = В/Н и индукции насыщения Д, оптимальные характеристики реализуются при размере кристаллитов менее 20 нм. В классическом сплаве Р1пете1 на основе железа, кремния и бора с добавками ниобия и меди, полученного контролируемой кристаллизацией из аморфного состояния, магнитная доменная структура в наночастицах Ре — 81 отсутствует, что в сочетании с взаимной компенсацией магнитострикционных эффектов в кристаллитах и аморфной матрице ведет к формированию очень низкой коэрцитивной силы (5—10 А/м), высокой начальной магнитной проницаемости при обычных и высоких частотах. За счет малой площади, ограниченной кривой перемагничивания, потери на пере-магничивание такого материала невелики.  [c.76]

Магнитные материалы. На рис. 3.19 — 3.21 приведены данные, иллюстрирующие влияние размера кристаллитов на магнитные свойства материалов различных типов. В последние годы благодаря изучению свойств наноматериалов, полученных контролируемой кристаллизацией из аморфного состояния, японскими учеными был открыт новый класс магнитомягких материалов с высоким уровнем статических и динамических магнитных свойств по сравнению с аналогичными по назначению кристаллическими и аморфными сплавами. Это сплавы на основе Ре —81 —В с небольшими добавками N6, Си, 2г и некоторых других переходных металлов (например, Р1пете1 в Германии сплавы этого типа называются Витроперм ). После закалки из расплава эти сплавы аморфны, а оптимальные параметры достигаются после частичной кристаллизации при температуре 530 —550 °С, когда выделяется упорядоченная нанокристаллическая фаза Ре —81 (18 — 20) % с размером частиц около 10 нм. Объемная доля наночастиц в аморфной матрице составляет 60 — 80 %. Сплавы обладают низкой коэрцитивной силой (5— 10 А/м) и высокой начальной магнитной проницаемостью при обычных и высоких частотах при малых потерях (200 кВт/м ) на перемагничивание, что обеспечивает их широкое применение в электротехнике и электронике в качестве трансформаторных сердечников, магнитных усилителей и импульсных источников питания, а также в технике магнитной записи и воспроизведения и т.д., обеспечивая значительную миниатюризацию этих устройств и стабильную работу в широком диапазоне частот и температур. Мировой выпуск сплавов оценивается на уровне 1000 т в год [39].  [c.162]

Значения Ни дают возможность с достаточной для практики точностью представить вид кривой гистерезиса данного Ф. Эти величины определяются материалом Ф и являются его магнитными хар-ками. По величине коэрцитивной силы, характеризующей ширину петли гистерезиса, ферромагнитные материалы делятся на магнитномягкие, у к-рых коэрцитивная сипа Не мала (пермаллой, трансформаторное железо и др.), и магштнотвердые, у к-рых коэрцитивная сила большая (сплавы для постоянных магнитов, окясь железа и др.). Конструкционные стали в зависимости от степени легирования и вида термообработки могут быть как магнитномягкими (напр., ст.10, ст.20), так и магнитнотвердыми (кобальтовые, вольфрамо-вые стали в закаленном состоянии).  [c.399]

Постоянные магниты (так называемые твердые магнитные материалы) характеризуются высокими значениями коэрцитивной силы и остаточного намагничивания. Среди них широко известны литые сплавы на основе железа тина Ални (А1 - - N1), Алпико (то же с Со), Алсифер (А1 -Ь 81) и др., обладающие превосходными магнитными свойствами, но крайне хрупкие, грубозернистые и мало технологичные. Из сплавов Ални и Алпико, например, весьма трудно получать беспористые отливки, а их обработка резанием требует применения алмазных инструментов.  [c.347]

Бариевые магниты по сравнению с литыми обладают очень большой коэрцитивной силой и малой остаточной индукцией. Удельное электрическое сопротивление р бариевых магнитов в миллионы раз выше, чем р металлических материалов, что позволяет использовать бариевые магниты в магнитных цепях, подвергающихся воздействию полей высокой частоты. Бариевые магниты не содержат дефицитных и дорогих материалов они приблизительно в 10 раз дешевле магнитов из ЮНДК24.  [c.323]

В электронике больших мощностей в последнее время все чаще находят применение импульсные источники питания, работающие на частотах вплоть до 100 кГц. Сочетание высокого электрического сопротивления аморфных материалов микронных сечений с малыми гистерезисными потерями и высокой максимальной магйитной проницаемостью позволяет в значительной степени сократить время накопления энергии для нового импульса и создает весьма удачный комплекс свойств для использования в этой области частот. Например, для независимого контроля каждого из выходов такого источника можно применить дроссели с тороидальными сердечниками, позволяющими осуществить подобный контроль с использованием чисто магнитных эффектов. При этом, помимо низких потерь на перемагничивание, необходима также прямоугольная форма петли гистерезиса. В этом случае для достижения высокой эффективности (снижение потерь, увеличение КПД) целесообразно использовать материал с чрезвычайно низким значением коэрцитивной силы. Именно у аморфных материалов возможно достичь сочетания всех этих свойств.  [c.609]


Смотреть страницы где упоминается термин Магнитные материалы с малой коэрцитивной силой : [c.90]    [c.92]    [c.343]    [c.16]    [c.315]    [c.194]    [c.15]    [c.363]    [c.311]    [c.221]    [c.5]   
Смотреть главы в:

Физические основы устройства и работы авиационных приборов  -> Магнитные материалы с малой коэрцитивной силой



ПОИСК



Коэрцитивная сила

Коэрцитивная сила магнитная

Магнитные материалы —

Магнитные силы



© 2025 Mash-xxl.info Реклама на сайте