Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атомное ядро и электронные оболочки

При прохождении бета-излучения через вещество происходит упругое рассеяние электронов (или позитронов) на атомных ядрах и электронных оболочках, а также неупругие столкновения с атомными ядрами.  [c.8]

Атомное ядро и электронные оболочки  [c.184]

Исследования строения атома и атомного ядра показали, что J3 состав атома входят электроны, протоны и нейтроны. Z протонов и (А — Z) нейтронов, вступая в сильные взаимодействия между собой, образуют атомное ядро Х , а Z электронов, обращающихся вокруг ядра, образуют электронную оболочку атома. В связи с этим вполне естественно было назвать эти частицы (е , р, п) элементарными частицами. Фотон (7), позитрон (е ) и нейтрино (v), имеющие самое непосредственное отношение к атому и ядру, также стали называть элементарными частицами.  [c.337]


Однако оставалось еще много неясных вопросов. Среди них особенно важными были два 1) каков по величине заряд атомного ядра и соответственно сколько электронов в оболочке нейтрального атома того или иного элемента, 2) как эти элементы располагаются внутри атомной оболочки.  [c.452]

Проблема строения атома состоит из двух основных вопросов — структуры атомного ядра и структуры электронной оболочки.  [c.271]

Химический элемент — вид атомов, характеризующихся определенной совокупностью свойств. Химические элементы в свободном состоянии являются простыми веществами, не разложимыми химическими методами на олее простые вещества. Каждый хи1,шческий элемент характеризуется атомным номером (равным положительному заряду его ядра), структурой электронной оболочки атома и связанными с этим определенными физическими и химическими свойствами. Взаимосвязь химических элементов, их единство и различие отражают периодический закон элементов.  [c.351]

В пределах одного периода, точнее начиная с щелочного металла до середины группы переходных металлов, в направлении слева направо атомные металлические радиусы уменьшаются. В той же последовательности возрастает электрический заряд атомного ядра и происходит увеличение числа электронов, находящихся на валентной оболочке. При возрастании числа связывающих электронов, приходящихся на один атом, металлическая связь упрочняется, и вместе с тем из-за увеличения заряда ядра усиливается притяжение остовных (внутренних) электронов ядром, поэтому величина металлического атомного радиуса уменьшается.  [c.56]

Кристаллическая структура и свойства элементов зависят от строения атомов (строения электронных оболочек — заряда ядра, идентичного атомному номеру Z). Количество электронов во внешних оболочках, распределение их по энергетическим уровням и определяют взаимодействие этих электронов. Тенденция к взаимной компенсации магнитных моментов, обеспечивающей прочную связь, характерна как для внутренних, так и для внешних электронов.  [c.5]

Наряду с разработкой теории электронной оболочки атома особый интерес вызывали также атомные ядра. С ядерными процессами наука встретилась впервые при открытии радиоактивности и радиоактивных превращений, при открытии и исследовании изотопов, при искусственном превращении стабильных атомных ядер азота в ядра кислорода (Резерфорд, 1919).  [c.7]

Атомные ядра представляют сложные квантовомеханические системы, построенные из нуклонов того и другого сорта (р, п), удерживаемых вместе специфическими силами притяжения. Лишь ядра водорода состоят из одного прогона. В таблицах атомных ядер изотопов обычно приводится нейтрон как ядро с Z = 0. Однако такое ядро, лишенное электрического заряда, не способно иметь электронную оболочку. Кроме этих случаев, неизвестны атомные ядра, построенные только из одних нейтронов или протонов. Некоторыми авторами теоретически исследуется вопрос о возможности существования тяжелых ядер, состоящих только из одних нейтронов, исследуется критический размер такого ядра —  [c.97]


Если движение нуклонов в ядре имеет хаотический характер и можно воспользоваться статистическим методом рассмотрения, то ядро можно уподобить разреженному ферми-газу, находящемуся в замкнутом объеме. В этом случае мы будем иметь газовую модель ядра. Наоборот, если нуклоны ядра совершают упорядоченные дни жения, то ядро уподобляется планетной системе или атомной си стеме с почти независимым орбитальным движением электронов По определенному закону нуклоны ядра группируются в оболочки В этом случае мы будем иметь дело с моделью ядерных оболочек  [c.178]

Отдельные догадки о существовании в ядрах оболочек протонов и электронов высказывались еще в 1924—1928 гг. до от1<рытия нейтрона. Однако доказательства в пользу модели ядерных оболочек часто сменялись сильными аргументами против нее, и наоборот. И вот в период 1935—1945 гг. было установлено, что модель ядерных оболочек не в состоянии объяснить энергии связи ядер и особенно легких ядер. Против модели оболочек выдвигаются серьезные возражения, что ядро в отличие от электронной оболочки атома не имеет преобладающего центрального потенциала и не может рассматриваться по аналогии с атомной (электронной) оболочкой. Успех капельной модели в объяснении деления ядер и правдоподобность идей составного ядра в истолковании ядерных реакций значительно задержали изучение оболочечной структуры атомных ядер.  [c.183]

Удается вычислить и экспериментально определить коэффициенты внутренней конверсии, т. е. вероятность конверсии с той или иной электронной оболочки. Знание этих коэффициентов позволяет получить сведения об изменении спина ядра в результате излучения. Явление внутренней конверсии часто используется для изучения спектров у-лучей и установления уровней атомных ядер.  [c.260]

И. Бор обратил внимание на то, что соударения падающих частиц с ядром существенным образом отличаются, например, от соударения электрона с атомными системами. Электроны атомной оболочки образуют довольно рыхлую систему. И когда внешний электрон пролетает через электронную оболочку атома, то он  [c.273]

Одноэлектронное приближение энергетические зоны. Мы рассматривали газ свободных электронов. Теперь перейдем к электронам в твердом теле. Условно разобьем эти электроны на две группы электроны, сильно связанные с атомными ядрами (электроны полностью заполненных оболочек), и электроны, обобществленные кристаллом. Первые участвуют вместе с ядрами в тепловых колебаниях решетки. Вторые перемещаются по всему кристаллу. Здесь рассматриваем только обобществленные электроны.  [c.140]

В основу рассмотрения положим следующую модель твердое тело представляет собой совокупность ионов и валентных электронов. Ионы —. это атомные ядра вместе со всеми электронами в заполненных оболочках. Взаимодействие электронов заполненных оболочек с ядром является столь сильным, что сближение атомов и образование из них крис-  [c.46]

В атомах щелочных металлов внещний (валентный) электрон связан с ядром значительно слабее, чем остальные (внутренние) электроны, которые образуют с ядром компактный комплекс, называемый атомным остатком. Излучение и поглощение света атомами щелочных металлов связаны с переходами только внешнего ( оптического ) электрона электроны же атомного остатка в переходах не участвуют. Таким образом, атомы щелочных металлов по строению электронной оболочки приближаются к одноэлектронным системам, причем роль ядра у них играет атомный остаток. Поле, создаваемое атомным остатком, является сферически симметричным. На больших расстояниях г от атомного остатка потенциальная энергия оптического электрона равна  [c.53]

В первоначальном варианте таблицы Д. И. Менделеева элементы располагались в порядке возрастания атомных масс и группировались по сходству химических свойств. Объяснение периодическому закону и структуре периодической системы в дальнейшем было дано на основе, квантовой теории строения атома. Оказалось, что последовательность расположения элементов в таблице определяется зарядом ядра, а периодичность физико-химических свойств связана с существованием электронных оболочек атома, постепенно заполняющихся с возрастанием 2.  [c.1231]


Мюонные атомы имеют конечное время жизни, определяемое временем жизни х -мюона ( 2,2 мкс). Обычно наряду с мюоном в атомной оболочке присутствуют и электроны, но их роль пренебрежимо мала, потому что мюон в среднем находится значительно ближе к ядру, чем электроны. После захвата -мюона на сравнительно дальнюю орбиту (возбужденное состояние) мюонные атомы переходят в основное состояние с испусканием квантов электромагнитного излучения или безызлучательно с выбросом электронов из оболочки атома.  [c.197]

Каждый атом обладает отрицательно заряженной электронной оболочкой и положительно заряженным атомным ядром. В ядре сосредоточена почти вся (более 99,95%) масса атома. Сточки зрения атомных масштабов ядра обладают ничтожно малыми размерами и колоссальной прочностью. Размеры ядер имеют порядок — — 10 см, Б то время как для внешних электронных оболочек атомов характерны длины порядка 10" см. Для отрыва обоих электронов от атома гелия достаточно энергии 79 эВ, а для разрыва ядра гелия на составные части необходима в сотни тысяч раз большая энергия 28 МэВ = 28-10 эВ.  [c.30]

Старейшим методом определения спинов и магнитных моментов ядер является изучение сверхтонкой структуры оптических спектров атомов. Явление сверхтонкой структуры состоит в том, что магнитный момент ядра, взаимодействуя с магнитным моментом электронной оболочки, расщепляет электронные уровни за счет того, что энергия взаимодействия этих магнитных моментов зависит от их взаимной ориентации. Расщепление же электронных уровней приводит к тому, что оказывается расщепленной на несколько линий и спектральная частота соответствующего атомного электромагнитного излучения. Выясним закономерности этого расщепления.  [c.48]

Источником теплоты является топливо, используемое в настоящее время во все возрастающих количествах. При горении органического топлива протекают химические реакции соединения горючих элементов топлива (углерода С, водорода Н и серы S) с окислителем — главным образом кислородом воздуха. Реакции горения протекают с выделением тепла при образовании более стойких соединений — СО2, SO2 и Н2О. Эти реакции связаны с изменением электронных оболочек атомов и не касаются ядер, так как при химических реакциях ядра реагирующих атомов остаются нетронутыми и целиком переходят в молекулы новых соединений. В 1954 г., после пуска в СССР первой в мире промышленной атомной электростанции мощностью 5 Мет, наступил век промышленного использования ядерного топлива, т. е. тепла, выделяющегося при реакциях распада атомных ядер некоторых изотопов тяжелых элементов и Ри . Вследствие ограниченности ресурсов топлива в Европейской части СССР, а также в районах, удаленных от месторождений органического топлива, в СССР строят мощные атомные электрические станции, и тем не менее основным источником тепла остается органическое топливо, о котором ниже приведены краткие сведения. В качестве топлива используют различные сложные органические соединения в твердом, жидком и газообразном состоянии. В табл. 16-1 приведена общепринятая классификация топлива по его происхождению и агрегатному состоянию.  [c.206]

Ионизирующее излучение, проходя через изделие (вещество), взаимодействует с атомными ядрами и электронными оболочками, поглощаясь и рассеиваясь, и вследствие этого испыгывает ослабление. Степень ослабления зависит от толщины 8 и плотности р контролируемого объекта, а также интенсивности I и энергии Е излучения.  [c.248]

Очень своеобразная радиоактивность была открыта в, 1938 г. Альварецем. Это так называемый /С-захват, сущность которого заключается в том, что атомное ядро захватывает электрон с электронной оболочки собственного атома. /С-захват так же, как и р-распад, сопровождается испусканием нейтрино.  [c.21]

ОРБИТА электронная — траектория движения электрона вокруг ядра в атоме или молекуле ОРБИТАЛЬ —волновая функция одного электрона, входящего в состав электронной оболочки атома или молекулы и находящегося в электрическом иоле, создаваемом одним или несколькими атомными ядрами, и в усредненном электрическом поле, создаваемом остальными электронами ОСЦИЛЛЯТОР как физическая система, совершающая колебания ангармонический дает колебания, отличающиеся от гармонических гармонический осуществляет гармонические колебания квантовый имеет дискретный спектр энергии классический является механической системой, совершающей колебания около положения устойчивого равновесия) ОТРАЖЕНИЕ [волн происходит от поверхности раздела двух сред, и дальнейшее распространение их идет в той же среде, в которой она первоначально распросгра-нялась диффузное характеризуется наличием нерегулярно расположенных неровностей на поверхности раздела двух сред и возникновением огражен1 ых волн, идущих во всех возможных направлениях зеркальное происходит от поверхности раздела двух сред в том случае, когда эта поверхность имеет неровности, размеры которых малы по сравнению с длиной падающей волны, а направление отраженной волны определяется законом отражения наружное полное сопровождается частичным поглощением световой волны в отражающей среде вследствие проникновения волны в Э1у среду на глубину порядка длины волны полное внутреннее происходит от поверхности раздела двух прозрачных сред, при котором преломленная волна полностью отсутствует]  [c.257]

Атомный О. и. представляет собой связанное состояние атома и электрона по своей структуре как система, состоящая из положительно заряженного ядра и электронов, О. и. подобен атому. Однако, в отличие от атома, в О. и. взаимодействие валентного электрона с атомом короткодействующее поэтому число связанных состояний О. и. чаще всего одно, в то время как атом обладает бесконечным числом связаЬных состояний. Взаимодействие валентного электрона О. и. с атомным остатком носит обменный характер (си. Обменное взаимодействие). Поэтому способностью присоединять к электронной оболочке добавочный электрон обладают атомы, у к- )ых внеш. часть этой оболочки не заполнена. Для атома с заполненной электронной оболочкой взаимодействие и.меет характер отталкивания вследствие. этого щёлочноземельные металлы, имеющие заполненную внеш. s-оболочку из двух электронов, и инертные газы, имеющие замкнутую оболочку из шести р-электронов, не имеют О. и.  [c.514]


Э. с. электрона в атомах и ионах определяется его взаимодействием с ядром и электронами атомного остатка (атомного остова). Э. с. электронов внеш. атомных оболочек систем, находящихся в основном состоянии, совпадает с энергией ионизации, а для избыточного электрона от-рицат. ионов характеризует сродство к электрону. Э. с, электронов внутр. оболочек растёт по мере приближеши оболочки к ядру, что связано с влиянием не скомпенсированного др. электронами атомной системы кулонов-ского поля ядра. Напр., Э. с. электронов разных оболочек нейтрального атома Mg, имеющего электронную конфигурацию l.T 2j 2p 3i , составляют (в эВ) 7,65 (35 — оболочка), 54(2 j), 92(2. ) и 1308(b).  [c.614]

Как показало электронно-микроскопическое исследование, Ru— Си-катализатор содержал частицы размером от 10 до 60 А средним диаметром 32 А, а чисто рутениевый катализатор — частицы размером от 10 до 100 А примерно такого же среднего диаметра (36 А) (данные для медного катализатора отсутствуют). В опытах по окислению Ru—Си-катализатора при комнатной температуре было установлено, что присутствие меди защищает Ru от действия кислорода. На основании совокупности полученных результатов авторы работы [448] сделали вывод об образовании в порах силикагеля биметаллических кластеров, состоящих из рутениевого ядра и медной оболочки. К аналогичному же выводу они пришли при исследовании методом EXAFS смешанного Os—Си-катализатора, нанесгенного на силикагель с атомным соотношением металлов 1 1 [449].  [c.160]

ПЕРИОДИЧЕСКИЙ ЗАКОН, закон периодичности химических и физич. свойств элементов. Краткая формулировка П. з. состоит в следующем все химические и подавляющее большинство физич. свойств элементов представляют собой периодич. ф-ию (прерывную) от величины заряда атомного ядра. Закон этот был открыт Д. И. Менделеевым в 1869 г. и опубликован в том же году в первом томе Журнала русского физико-химич. общества, а также и за границей. В то время не существовало никаких представлений об атомном ядре, и Менделеев формулировал свой П. з. несколько иначе, а именно за аргумент взял вместо заряда ядра ат. вес и на основе своего постулата развил идею о естественной периодической системе элементов, разместрш в ней отдельно элементы вполне правильно—в порядке возрастания ядерного заряда (см. табл.). При этом Менделееву, как известно, пришлось поступиться в трех случаях правилом постепенного нарастания ат. веса и поместить элемент с меньшим ат. весом после элемента с весом ббльшим. Список элементов, известных в настоящее время, обнаруживает четыре случая подобной аномалии атомных весов. В 1913 году Мозли заменил в формулировке Менделеевского закона ат. вес зарядом ядра, находящим непосредственное выражение в так наз. порядковом числе, или атомном номере, элемента. Своеобразный смысл понятия об ат. в. был раскрыт позднее работами Астона и Гаркин-са. Первые проблески понимания причин периодичности свойств элементов мы находим в работах Дж. Дж. Томсона, но только И. Бор (1913) дал ясное толкование как строения электронных оболочек атомов, так и периодической системы элементов. Свое завершение идеи Бора получили в 1925 г. в принципе, высказанном Паули в атоме не может существовать двух электронов.  [c.108]

Для вычисления энергетического выхода ядерной реакции необходимо найти разность масс частиц, вступающих в реакцию, и частиц — продуктов реакции. В реакции участвуют атомные ядра, но в справочных таблицах обычно даются сведения лишь о массах атомов. Можно найти массу каждого атомного ядра вычитанием массы электронов оболочки из массы атома. Можно поступить иначе. Если в уравнении ядерной реакции слева и справа пользоваться только массами атомов (т. е. массой атома водорода, а не массой протона слева, и массой атома гелия, а но массой альфа-частицы справа), то из-за одинаковости числа электронов в атомах, вступающих в реакцию, и в продуктах реакции их вычитание осуществляется автоматически при нахоясдении разности масс. Таким образом, для решения яадачи можно воспользоваться сведениями из справоч-1шка о массах атомов  [c.343]

Заряд атомного ядра Z определяется количеством протонов в ядре (и, следовательно, количеством электронов в атомных оболочках), которое совпадает с порядковым номером элемента в таблице Менделеева. Заряд определяет химические свойства всех изотопов данного элемента. Наиболее точно заряд ядер был измерен в 1913 г. Мозли, который нащел простую связь между частотой характеристического рентгеновского излучения V и зарядом Z  [c.25]

Исследование различных свойств атомиых ядер (энергия связи, распространенность в природе, особенности а- и р-распада и др.) локазывает особую устойчивость ядер, содержащих 2, 8, 20, 50, 82 или 126 (магические числа) протонов или нейтронов. Подобное поведение атомных ядер объясняется в оболочечной модели ядра, построенной по аналогии с моделью электронных оболочек в атоме.  [c.200]

Наряду со слабомагнитными телами существует ряд веществ, например ферромагнетики, для которых намагниченность не является линейной функцией поля. Для диамагнетиков характерно, что восприимчивость, как правило, не зависит от температуры, а для парамагнетиков она часто изменяется обратно пропорционально абсолютной температуре. Магнитные свойства атома обусловлены следующими факторами орбитальным движением электроно)в спиновыми эффектами магнетизмом атомного ядра Нейтроны и протоны, составляющие ядро, обладают собственными магнитными моментами. Однако величина магнитного момента нуклона из-за того, что его масса почти в 2000 раз больше массы электрона, пренебрежимо мала по сравнению с магнитным моментом электрона. Вычисление суммарных моментов атомов облегчается тем, что как суммарный орбитальный, так и суммарный спиновый момент полностью застроенных электр(зн-ных оболочек равен нулю. Поэтому следует принимать во внимание лишь электроны, занимающие незаполненные оболочки.  [c.143]

Такое различие масштабов является причиной резкого качественного разграничения явлений атомной и ядерной физики. В атомной физике имеют дело со столь большими расстояниями, что ядро почти всегда можно рассматривать просто как заряженную материальную точку. В ядерной же физике имеют дело со столь высокими энергиями, что почти всегда можно пренебрегать влиянием процессов, происходящих в электронных оболочках, на структуру ядра и протекание ядерных реакций. Тонкие эффекты влияния атомных явлений на внутриядерные требуют специальных прецизионных измерений, таких как, например, в эффекте Мёссбауэра (см. гл. VI, 6, п. 6).  [c.30]

Электронное строение. Заряд ядра и число электронов, нейтрализующих его, играют основную роль в организации структуры кристаллической решетки и большинства свойств металла. Свойства всех элементов являются периодической функцией атомной массы, т. е. числа электронов. В таблице Д. И. Менделеева наиболее типичные металлы, сравнительно легко отдающие электрон, — щелочные — находятся слева в I группе, а наиболее типичные неметаллы, энергично присоединяющие электрон для достройки электронной оболочки, — галогены — находятся справа в VII группе. Металличность элементов возрастает при перемещении влево и вниз таблицы. Вблизи правого верхнего угла находятся полуметаллы мышьяк, селен, германий, сурьма, висмут. Исходя из этого, можно полагать, что все тяжелые элементы, начиная с франция, будут обладать металлическими свойствами и хорошей пластичностью. Важно не только число электронов в атоме, по и строение их оболочек — конфигурация, определяющая кристаллическую структуру и большинство свойств металлов.  [c.193]


Здесь //(0) — напряженность магнитного поля, вызванного электронной оболочкой в том месте, где находится ядро. Для того чтобы по эмпирическому значению расщепления ov найти надо знать величину Я(0). Точное значение ее может быть вычислено лишь для атома водорода и сходных с нйм ионов. Для атомных систем с более сложной электронной оболочкой/У (0) можно рассчитать, пользуясь соответствующими приближенными методами квантовой механики или, более грубо, на основании модельных полукласси-ческих представлений.  [c.542]


Смотреть страницы где упоминается термин Атомное ядро и электронные оболочки : [c.248]    [c.169]    [c.264]    [c.36]    [c.669]    [c.682]    [c.406]    [c.544]    [c.312]    [c.181]    [c.50]    [c.247]    [c.266]    [c.386]   
Смотреть главы в:

Справочник по элементарной физике  -> Атомное ядро и электронные оболочки



ПОИСК



Атомное ядро

Атомное ядро ядра)

Атомный вес

Электронные оболочки

Электроны атомные



© 2025 Mash-xxl.info Реклама на сайте