Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ток диффузионный

Диффузионный ток. Диффузионный ток возникает при образовании в растворе электролита зон с неодинаковой концентрацией ионов. Движущей силой процесса является градиент концентраций Лс. Плотность диффузионного тока , протекающего через участок толщиной / , в соответствии с известным уравнением Фика для скорости диффузии может быть выражена  [c.20]

Если рассматривать р — п — р-транзистор, через эмиттерный переход Я1 слева направо имеет место диффузия основных носителей — дырок. Справа налево проходит через тот же переход диффузионный ток основных носителей базы — электронов. Одновременно неосновные носители (дырки в п-слое и электроны в р-слое), ускоряемые возникшим электрическим полем р — п-перехода, создают так называемые дрейфовые токи дырочный, проходящий из слоя п в слой р, и электронный — из слоя р в слой п. Направления дрейфовых токов соответственно противоположны направлениям токов диффузионных. При отсутствии внешнего поля, т. е. внешнего источника напряжения, диффузионные и дрейфовые составляющие токов каждого вида носителей равны между собой и результирующий ток через переход П равен нулю.  [c.61]


Если соблюдается ряд условий, при которых ток определяется только скоростью доставки ионов к электроду, величина предельного тока ( диффузионного тока ) прямо пропорциональна концентрации восстанавливающихся ионов. Так называемый потенциал полуволны (потен-  [c.139]

Наибольший (предельный) диффузионный ток наблюдается, когда с О (например, когда каждый приближающийся к электроду ион немедленно вступает в электрохимическую реакцию)  [c.207]

Концентрационная поляризация всегда имеет место при электрохимических электродных процессах, увеличивая значение поляризации данного процесса на меньшую или большую величину (AV > ДУэ = х), а часто (при высоких, близких к 1д плотностях тока) определяет суммарную скорость процесса диффузионный контроль процесса).  [c.212]

Максимально возможная катодная плотность тока, т. е. предельная диффузионная плотность тока по кислороду 1д,, наблюдается при максимальном градиенте концентрации кислорода в диффузионном слое [при (со,) о — Со, = max или со, == О  [c.239]

Диффузионная плотность тока  [c.240]

Из-за все увеличивающегося торможения за счет ограниченной диффузии катодная поляризационная кривая идет вверх более круто (участок кривой АС на рис. 159), чем при наличии только перенапряжения ионизации кислорода (участок АВ на рис. 159), и при приближении к предельной диффузионной плотности тока по кислороду 1д она переходит в вертикальное положение (участок DE на рис. 159).  [c.242]

Если изменить условия диффузии кислорода, перемешивая раствор, общая кривая катодной поляризации расположится несколько ниже первой (пунктирная линия), а предельный диффузионный ток возрастает.  [c.263]

Как указывалось выше, кислородная и водородная деполяризации протекают параллельно и независимо друг от друга, однако возможно косвенное (вторичное) влияние водородной деполяризации на кислородную деполяризацию, в частности на предельную диффузионную плотность тока по кислороду 1д .  [c.263]

I. Половина предельного диффузионного тока. 2. Первый перегиб на кривой. 3. При потенциале, определяемом точкой пересечения кривой перенапряжения ионизации кислорода со значением предельного диффузионного тока  [c.264]

I. Предельный диффузионный ток. 2. Максимально возможная скорость диффузии кислорода.  [c.264]

При плотности тока, равной удвоенной плотности предельного диффузионного тока. 2. При потенциале точки пересечения кривой водородной деполяризации со значением предельного диффузионного тока  [c.264]


При коррозионных процессах с кислородной деполяризацией, которые очень часто, протекая с катодным контролем, тормозятся и замедленностью реакции ионизации кислорода на катодных участках, и в значительной степени замедленностью диффузии кислорода к катодным участкам, общее сопротивление (поляризуемость) катодного процесса Р можно (по Н. Д. Томашову) количественно разделить на сопротивление катодной реакции Рр и сопротивление диффузии кислорода Рд. Это можно сделать на основании взятых из поляризационной коррозионной диаграммы величин коррозионного тока (точка В на рис. 185 — пересечение анодной и катодной кривых) и предельного диффузионного тока по кислороду /д (точка Е на рис. 185 — вторая точка  [c.276]

Переменный блуждающий ток также опасен, но скорость разрушения им металлов в несколько раз меньше, чем постоянным током. Вследствие диффузионного ограничения скоростей электродных реакций материальный эффект коррозии металлов блуждающими переменными токами в грунтах меньше, чем в жидких электролитах (растворах).  [c.391]

Оценим теперь толщину диффузионного следа за газовым пузырьком. Будем предполагать, что линия тока, ограничивающая область, занятую внешним диффузионным пограничным слоем, ограничивает и область диффузионного следа. Можно считать, что внешний диффузионный пограничный слой при 9 = 71/2 кончится на расстоянии порядка Я (11/Ре ) от начала координат. Тогда из выражения (2. 5. 4) для функции тока потенциального течения жидкости получаем, что значение функции тока на линии тока, ограничивающей область диффузионного следа за газовым пузырьком и область внешнего диффузионного пограничного слоя, изменяется в зависимости от значения критерия Ре следующим образом  [c.260]

Как отмечалось в разд. 6.3, это уравнение справедливо в пределах тонкого диффузионного пограничного слоя, т. е. на расстояниях // 7 / /Ре, за исключением окрестностей точек 6=0, тт. Явный вид компонент скорости жидкости и в пределах диффузионного пограничного слоя можно определить, используя выражение для функции тока ( ) (2. 9. 18) и предполагая, что ПАВ отсутствуют ( а/У6=0). Имеем  [c.272]

Разность потенциалов может возникать не только между двумя металлами в электролите, но и при контакте двух растворов, различающихся по составу или концентрации. Эта разность потенциалов называется потенциалом жидкостной границы, а его знак и размер определяются относительной подвижностью ионов и различием их концентраций на границе жидкостей. Например, через границу раздела между разбавленной и концентрированной соляной кислотой ионы Н" движутся с большей скоростью, чем С1 (подвижности при бесконечном разбавлении равны, соответственно, 36-10 и 7,9-10" см/с). Таким образом, разбавленный водный раствор приобретает положительный заряд по отношению к концентрированному. Ионы К" и С1 имеют примерно одинаковую подвижность, поэтому диффузионные потенциалы на границе между разбавленным и концентрированным КС1 невелики по сравнению с НС1. Если растворы НС1 насыщены КС1 и ток через границу жидкостей переносится в основном ионами К" и С1 , то потенциал жидкостной границы очень мал. Когда имеется граница соприкосновения двух жидкостей, использование насыщенного раствора КС1 позволяет уменьшить потенциалы жидкостной границы.  [c.42]

В слабо ионизированной плазме давление электронного и ионного компонентов мало по сравнению с давлением нейтрального газа, поэтому при диффузионном движении заряженных частиц, так же как и при прохождении тока, происходит не перемещение всей массы вещества, а только перемещение составляющих.  [c.57]

Собственное магнитное поле, охватывая область высоких концентраций зарядов наподобие футляра, уменьшает диффузионные потери частиц. Благодаря этому возможна высокая концентрация частиц и энергии над микроучастками (ячейками) катода, что приводит к высокой плотности тока, испарению металла и эмиссии электронов.  [c.73]

Диффузионный ток в некотором сечении внутри перегородки  [c.214]

При вычислении второго слагаемого можно использовать известный закон Фика, выражающий связь тока и потока нейтронов в диффузионном приближении  [c.19]


Диссипативная функция. Допустим, что диффузионные потоки, химические реакции и электрический ток отсутствуют тогда в движущейся вязкой и теплопроводящей жидкости действуют обобщенные силы  [c.354]

В случае импульсной поляризации, даже при очень большой плотности тока на электроде, слой металла, стравившегося за время импульса, весьма тонок, если длительность импульса достаточно мала. При этом геометрические размеры электрода практически не меняются. Кроме того, как будет показано далее, при достаточно коротких импульсах, даже при довольно больших плотностях тока, диффузионные ограничения в растворе практически не проявляются.  [c.174]

Таким образом, если имеются одновременно и градиент концентрации носителей, и электрическое поле, то в полупроводнике возникнут два тока — диффузионный и дрейфовый. Полигле плотности электронного и дыроч-24  [c.24]

Диффузионный контроль протекания катодного процесса, т. е. контроль диффузией кислорода к катодным участкам, имеет место при катодных плотностях тока, близких к предельной диффузионной плотности тока и очень малых скоростях подвода кислорода к корродирующему металлу, обусловленных затрудненностью диффузионного процесса а) в спокойных (неперемеши-ваемых) электролитах б) при наличии на поверхности корродирующего металла пленки вторичных труднорастворимых продуктов коррозии г) при подземной коррозии металлов.  [c.243]

Таким образом, перемешивание электролита в одном из пространств ячейки, облегчая диффузионные процессы (в результате уменьшения толщины диффузионного слоя), одновременно снижает концентрационную поляризацию и катодного, и анодного процесса, т. е. вызывает одновременно и эффект неравномерной аэрации, и мотоэлектрический эффект, которые действуют в противоположных направлениях. Направление тока при этом, т. е. полярность электродов гальванической макропары, обусловлено преобладанием одного из этих эффектов. Для менее термодинамически устойчивых металлов (Fe, Zn и др.) преобладает эффект неравномерной аэрации, а для более термодинамически устойчивых металлов (серебра, меди и их сплавов, иногда свинца) — мотоэлектрический эффект. Следует, забегая несколько вперед, отметить, что у электродов макропары неравномерной аэрации или мотоэлектрического эффекта за счет работы микропар в большей или меньшей степени сохраняются функции — у катода анодные, а у анода катодные (см. с. 289).  [c.247]

Ом 1см ) и i k = 50 мкА/см (порядка предельной диффузионной плотности тока по кислороду на горизонтальном проволочном электроде в спокойном ыеперемешиваемом нейтральном водном растворе) имеем  [c.276]

Если условия контактной коррозии металлов таковы, что суммарная анодная кривая (Fai)o6pVa пересекается с суммарной катодной кривой (VJo6p K области диффузионного контроля последней, например в точке 2 (рис. 255), то нетрудно заметить, что величина суммарного коррозионного тока /" (который полностью или большая часть его приходится на основной металл) определяется только ходом суммарной катодной кривой. Суммарная же катодная кривая отличается от катодной кривой основного (анодного) металла на величину катодного тока металла катодного контакта, который определяется только поверхностью катодных  [c.360]

Диффузионный перенос пара в макрокапиллярах осложняется явлением теплового скольжения. Если по длине капилляра имеется перепад температуры, то возникают циркуляционные токи воздуха у стенок капилляра — против потока теплоты, а по оси — в направлении потока теплоты. Так как у поверхности испарения внутри материала температура капилляров ниже, чем у внешней поверхности, то возникает движение газа к поверхности материала. Таким образом, тепловое скольжение усиливает перенос пара через зону испарения к поверхности материала, т. е. повышает ннтенснв-иость массопе])еноса.  [c.515]

Модель Ньюмена, учитывающая чисто диффузионный механизм массоперепоса в газовой фазе, может быть применена только для очень маленьких газовых пузырьков, диаметр которых не превышает 0.3 мм. Согласно эксперимента.льным данным [841, в пузырьках газа диаметром более 0.3 мм существует развитое течение газа, представляющее собой вихрь Хилла (см. рис. 6). Рассмотрим модель массопереноса, учитывающую наличие циркуляционного течения внутри газовых пузырьков [82 ( (модель Кронига — Бринк). Будем считать, что Ре со. Перейдем в уравнении (6. 1. 1) с краевыми условиями (6. 1. 2) —(6.1.4) и замыкающими соотношениями (6. 1. 5), (6. 1.6) к криволинейной системе координат (рис. 74). Семейство координатных линий I здесь выбрано таким образом, чтобы оно с точностью до постоянного множителя совпадало с линиями тока [)р=соп81. Второе семейство координат ортогонально первому  [c.239]

Из соотношения (6. 4. 40) следует, что в случае Ре 1 длина диффузионного следа намного больше радиуса зоны циркуляционного течения Ь р- И. На расстояниях порядка Я концентрация целевого компонента меняется па величину с Я/Ь) с(1/Ре -), т. е. почтине меняется. Поэтому можно считать, что при движении вдоль линии тока во внутреннем следе концентрация целевого компонента также остается практически постоянной.  [c.261]

Сформулируем систему уравнений и граничных условий, описывающих массоперенос в диффузионных пограничных слоях. Поскольку объем пространства, занимаемый пузырьком газа, много меньше объема циркуляционной зоны, течение жидкости вблизи задней поверхности пузырька можно описывать при помощи вихря Хилла [92]. Соответствующая функция тока имеет вид  [c.261]

Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]


Рассчитайте минимальную концентрацию кислорода (в мл/л) необходимую для пассивации в 3 % растворе NajS04 железа и сплава Сг—Fe с 12 % Сг. Коэффициент диффузии для Ог при 25°С D = 2-10 mV . (Исходить из равенства предельной плотности диффузионного тока восстановления кислорода и критической плотности тока, необходимой для пассивации.)  [c.390]

Уравнение (4) называют уравнением Стерна—Гири. Если катодный процесс контролируется концентрационной поляризацией, как это имеет место при коррозии с кислородной деполяризацией, то коррозионный ток равен предельному диффузионному току (рис. П.2). от случай отвечает большим или бесконечно большим значениям в уравнении (4). Следовательно, когда процесс контролируется концентрационной поляризацией такого рода, уравнение (4) приобретает вид  [c.400]

Пример распределения плотности потоков в активной зоне и отражателе приведен на рис. 9.11. Спад плотности потока тепловых нейтронов в активной зоне и соответствующий пик в отражателе вызваны замедлением быстрых нейтронов в отражателе. Как видно из рисунка, в рассматриваемом примере на границе активной зоны и отражателя наблюдается положительный результирующий ток тепловых нейтронов из отражателя в активную зону [см. формулу (9.20)]. Пространственно-энepгвfllчe кoe распределение плотности потока нейтронов в активной зоне можно более точно определить из многогрупповой системы диффузионных уравнений, обычно используемых для описания критичности реактора. Решение такой системы удается достаточио просто реализовать с помощью ЭВМ [27], что в  [c.41]

Таким образом, для описания детальной структуры нейтронного поля в реакторной ячейке необходимы довольно сложные и трудоемкие численные расчеты. Для практических расчетов можно пользоваться приближенными методами, например односкоростным диффузионным приближенне.м. При этом задача решается так же, как в рассмотренном выше случае реактора с отражателем, только роль активной зоны выполняет блок горючего, а роль отражателя — замедлитель. Единственное различие — в граничном условии на внешней границе ячейки. Поскольку из каждой ячейки выходит столько же нейтронов, сколько в нее попадает, на границе ячейки результирующий ток нейтронов должен быть равен нулю.  [c.44]


Смотреть страницы где упоминается термин Ток диффузионный : [c.306]    [c.18]    [c.552]    [c.197]    [c.207]    [c.212]    [c.236]    [c.241]    [c.259]    [c.260]    [c.265]    [c.266]    [c.947]   
Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.498 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте