Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свариваемость меди и ее сплавов

Свариваемость меди и ее сплавов. Сварка меди затрудняется ее высокой теплопроводностью, большой жидкотекучестью, способностью сильно окисляться В нагретом и особенно в расплавленном состояниях. Теплопроводность меди почти в 6 раз, а коэффициент линейного расширения в 1,5 раза больше, чем у стали и железа.  [c.410]

Свариваемость меди и ее сплавов очень низка в связи с их большой электро- и теплопроводностью.  [c.13]


Назовите особенности теплофизических свойств меди и ее сплавов. Какие проблемы свариваемости меди и ее сплавов, как они решаются  [c.413]

Свариваемость меди и ее сплавов  [c.54]

Для газовой сварки сталей присадочную проволоку выбирают в зависимости от состава сплава свариваемого металла. Для сварки чугуна применяют специальные литые чугунные стержни для наплавки износостойких покрытий — литые стержни из твердых сплавов. Для сварки цветных металлов и некоторых специальных сплавов используют флюсы, которые могут быть в виде порошков н паст для сварки меди и ее сплавов — кислые флюсы (буру, буру с борной кислотой) для сварки алюминиевых сплавов — бескислородные флюсы на основе фтористых, хлористых солей лития, калия, натрия и кальция. Роль флюса состоит в растворении оксидов и образования шлаков, легко всплывающих на поверхность сварочной ванны. Во флюсы можно вводить элементы, раскисляющие и легирующие наплавленный металл.  [c.207]

Для автоматической сварки сжатой дугой применяют установку УПС-501, рассчитанную на силу тока до 500 А. Для ручной сварки используют установку УПС-301, позволяющую сваривать на постоянном токе прямой и обратной полярности силой 4...315 А в непрерывном и импульсном режимах коррозионно-стойкие стали толщиной до 5 мм, медь и ее сплавы от 0,5 до 3 мм, алюминий и его сплавы толщиной 1...8 мм. Напряжение холостого хода этой установки 80 В, рабочее напряжение дуги 18...40 В. Плазмотрон установки УПС-301 имеет комплект сменных сопел с различными диаметрами канала и обеспечивает сварку на токах силой 25...315 А при прямой и 25...70 А при обратной полярности. Его конструкция обеспечивает возможность возбуждения дуги касанием свариваемого изделия.  [c.231]

Сварка меди и ее сплавов. Присадочным материалом при газовой сварке меди служит медная проволока. Вследствие большой теплопроводности меди сварку производят горелками больших номеров, а свариваемую деталь для уменьшения теплоотдачи помещают на асбестовой подкладке.  [c.296]

Газовая резка медных и латунных труб затруднена из-за большой теплопроводности меди и ее сплавов. Основными способами резки является механическая на станках, труборезах и других приспособлениях, а также плазменная резка. Из-за повышенной теплопроводности для увеличения скорости сварки рекомендуется в определенных случаях выполнять предварительный (и сопутствующий) подогрев медных и латунных трубопроводов. Сварка таких трубопроводов в положениях, отличных от нижнего, из-за большой жидкотекучести меди весьма затруднительна. Свойства и свариваемость меди зависят от ее чистоты. Загрязнение меди в процессе сварки снижает качество сварного соединения — вызывает повышенную хрупкость и несплавление, поэтому особое внимание при сварке следует обращать на защиту сварочной ванны от воздействия воздуха, добавляя в нее достаточное количество раскислителей.  [c.186]


Сварка меди и ее сплавов. На свариваемость меди большое влияние оказывают содержащиеся в ней вредные примеси О2, Нг,  [c.312]

Сварка меди и ее сплавов. Чистая медь хорошо сваривается сваркой плавлением. Однако получить чистую медь без примесей трудно. Практически в ней всегда содержатся примеси, которые в различной степени влияют на ее свариваемость. Особенно большое влияние оказывают примеси кислорода, водорода, висмута, серы и фосфора.  [c.254]

Медь и ее сплавы удовлетворительно свариваются электродами марок Комсомолец-100 , МН-5 и ОЗБ-1, а также угольным электродом на постоянном токе прямой полярности и достаточно хорошо свариваются аргонно-дуговой сваркой вольфрамовым электродом. Присадочным материалом служат круглые или прямоугольные прутки примерно такого же химического состава, что и свариваемый металл. При сварке угольным электродом в качестве флюса используют прокаленную до 500...550°С буру. Наплавленный шов проковывают при температуре не выше 500°С, чтобы улучшить его механические свойства.  [c.79]

Сварка меди и ее сплавов. Медь обладает высокой теплопроводностью и электропроводностью. В расплавленном состоянии она активно поглощает кислород с образованием закиси меди СигО. Закись меди образует с медью легкоплавкую эвтектику (Си О—Си), которая располагается по границам зерен и является причиной склонности меди к горячим трещинам. Расплавленная медь интенсивно поглощает водород. Закись меди и водород при охлаждении образуют пары воды, которые в замкнутом пространстве создают большое давление и вызывают образование значительного количества пор. Медь содержит вредные примеси — свинец, сурьму, мышьяк и висмут, которые значительно ухудшают свариваемость. Для раскисления меди и удаления закиси меди применяют вещества, активно реагирующие с кислородом — алюминий, кремний, фосфор. Чтобы не происходило окисления в процессе сварки, используют различные покрытия, флюсы или проводят сварку в защитной среде (аргона, гелия или азота). По окончании сварки рекомендуется быстрое охлаждение изделия в в воде или проковка и прокатка швов для улучшения пластических свойств сварного соединения.  [c.677]

Особенности технологии ЭШС меди и ее сплавов состоят, во-первых, в обеспечении необходимого прогрева и достаточного оплавления свариваемых кромок и, во-вторых,  [c.496]

При сварке меди и ее сплавов возможно образование пор и горячих трещин. Пористость сварных швов вызывается выделением газов из металла сварочной ванны в процессе ее кристаллизации. Основной причиной образования пористости является водород. Устранить пористость в швах можно введением в сварочную ванну цинка. Полезное действие цинка объясняется тем, что он интенсивно испаряется из сварочной ванны и увлекает за собой водород. Уменьшить пористость можно и предварительным подогревом свариваемого изделия, а также полным или почти полным проплавлением свариваемых листов. Этим облегчается выделение газов и затрудняется зарождение пор в кристаллизующемся металле.  [c.96]

С. меди и ее сплавов. Металлургич. медь обладает хорошими сварными качествами, но нек-рые примеси, напр, свинец, висмут, цинк, никель и олово, затрудняют выполнение С. В электролитич. меди отсутствуют присадки, предохраняющие от окисления, вследствие чего ее при С. можно легко пережечь. Кислород жадно поглощается медью при 1°пл. с образованием закиси меди, что может привести к красноломкости. Расплавленной медью механически поглощаются восстановительные газы, как водород, двуокись серы и окись углерода, к-рые остаются включенными в форме пузырей и значительно ослабляют прочность соединения. В связи с этим при газовой С. для избежания вредного влияния кислорода и поглощения газов требуется особенно тщательная установка пламени. Повышение крепости возможно для меди лишь путем соответствующей холодной обработки, а не путем изменения скорости ее охлаждения. Следует учитывать высокий размер усадки меди в 1,4%. Медь можно сваривать также на горновом огне или методом сопротивления. Затруднительно в данном случае избежать поглощения медью кислорода. При кузнечной С. в качестве присадки применяют буру для предохранения свариваемых частей от атмосферного воздуха. Чаще всего применяется газовая С. при помощи ацетиленокислородного пламени. Сварочному шву обычно придают У-образную или Х-образную форму со скосом кромок под углом друг к другу в 60° с зазором между ними ок. 5 мм. Кромки листов толщиной меньше 3 мм не скашиваются. В связи с сильным отводом тепла пламя приходится устанавливать почти вдвое более мощным, чем при С. стали. Часто для подогрева пользуются еще и второй горелкой. Вертикальные швы, как и листы толщиной > 5 мм, предпо-  [c.107]


Этот способ обладает рядом преимуществ при соединении элементов из меди и ее сплавов больших толщин возможностью осуществления больших тепловложений в свариваемые кромки и сварки стыковых соединений без разделки кромок, минимальным объемом механической обработки до и после сварки.  [c.121]

К — коэффициент, зависящий от теплофизических свойств свариваемого п алла, л/(с-мм), к равен для низкоуглеродистой стали — 0,028 — 0,036 для высоколегированной стали и чугуна — 0,021 —0,028 для меди и ее сплавов — 0,042—0,063 для алюминия — 0,028 — 0,042,  [c.213]

СВАРИВАЕМОСТЬ СТАЛИ С МЕДЬЮ И ЕЕ СПЛАВАМИ  [c.404]

Сварка стали с медью и ее сплавами, а также наплавка сплавов меди на сталь позволяют не только создать рациональные сварные конструкции, но н обеспечить значительную экономию цветного металла. Для оценки свариваемости стали с медью и ее сплавами следует прежде всего сопоставить между собой химико-физические свойства этих металлов  [c.404]

При изготовлении флюсов используются следующие вещества бура, борная кислота, окислы или соли натрия, калия, бария, фтора, лития и др. Состав флюсов выбирают в зависимости от состава и свойств свариваемого металла. Борная кислота и ее соединения являются наиболее распространенными флюсами при сварке и пайке меди и ее сплавов. При газовой сварке чугуна в качестве флюсов берут чаще всего окислы или соли натрия — едкий натрий, углекислый натрий и др. .  [c.32]

Наиболее полно этим требованиям удовлетворяют медь, медные сплавы, коррозионно-стойкие стали в меньшей степени — титановые сплавы. Медь и ее сплавы имеют высокую электропроводность, свариваемость, удовлетворительную адгезию к покрытиям, достаточную механическую прочность. Главным их недостатком является высокая чувствительность к коротким замыканиям, при которых выплавляются большие участки рабочей поверхности, что затрудняет их восстановление. Если заготовку электрода-инструмента получают литьем, то в качестве материала используют латунь или бронзу.  [c.288]

Фосфор вызывает хладноломкость стали. Он сильно понижает ее пластические свойства и способствует ликвации. Содержание фосфора в присадочной проволоке для сварки стали допускается до 0,04%, В чугуне фосфор (при содержании 0,5— 1%) является полезной примесью, так как способствует жидко-текучести чугуна и хорошему заполнению расплавленным металлом кромок свариваемого чугунного изделия. Содержание фосфора в присадочных стержнях составляет 0,5—0,8%. При сварке меди и ее сплавов (латуней и бронз) фосфор также полезен, так как является хорошим раскислителем при содержании его в медной проволоке до 0,25—0,4%,  [c.162]

Медь и ее сплавы сваривают проволокой и прутками из меди и сплавов на медной основе. Алюминий и алюминиевые сплавы сваривают сварочной проволокой из алюминия и его сплавов. Для сварки других металлов и сплавов применяют сварочную проволоку или стержни, изготовленные либо по ГОСТ на свариваемый металл, либо по техническим условиям.  [c.113]

Свариваемость меди и сплавов на ее основе  [c.369]

В книге рассмотрены физико-химические показатели свариваемости меди и сплавов на ее основе и технологические особенности сварки. Приведены рекомендации по выбору вида сварки, сварочных материалов, типов швов и технике сварки. Рассмотрены дефекты сварных соединений, причины появления й меры предупреждения. Вопросы сварки освещены с точки зрения специфических особенностей организации работ при изготовлении и ремонте конструкций изделий из меди и сплавов на ее основе.  [c.216]

Пневматическая схема машины для электро-контактной точечной сварки деталей на малоуглеродистых сталей толщиной до 3 мм. Свариваемые детали размещают между двумя вертикальными круглыми электродами из красной меди (или ее сплавов с хромом и титаном). К электродам через трансформатор подводят электрический ток до 100 000 а. Нижний электрод неподвижный, верхний — перемещается по дуге, сжимая свариваемые участки.  [c.260]

При температурах 300—350° С в концентрированной капельножидкой фосфорной кислоте и ее парах приемлемой коррозионной стойкостью обладает медь, если, конечно, в систему не попадает воздух или другой окислитель. Медь и, реже, ее сплавы широко применяют в отечественных и зарубежных производствах, получающих спирт метоДом- прямой гидратации [18—20]. Недостаточная механическая прочность не позволяет использовать медь в качестве конструкционного материала для аппаратуры, работающей под высоким давлением. Однако как футеровочный материал она обладает многими достоинствами (высокая пластичность, хорошая свариваемость, сохранение коррозионных свойств и т. п.) и щироко используется при защите реакционной и смежной аппаратуры, соприкасающейся с горячей фосфорной кислотой.  [c.100]

Универсальным видом сварки является дуговая сварка (рис. 13.1, а) с применением металлических 1 или угольных электродов. Она позволяет получать соединения деталей из конструкционных сталей всех марок, чугуна, алюминия, меди и некоторых ее сплавов. Толщина свариваемых стальных деталей 0,5—200 мм.  [c.136]

Железо как компонент модных сложнолегнрованных сплавов (латуни, бронзы) не оказывает существенного влияния на свариваемость, так как обычно находится в малых концентрациях. Влияние железа начинает проявляться прп наплавке меди и ее сплавов на сталь и прп сварке сталп с медью. В диаграмме  [c.330]

Изменение свойств в зависимости от температуры. При сварке меди и ее сплавов следует учитывать изменение механических свойств в зависимости от температуры и содержания прпмесей, которые могут ухудшать свариваемость (рис. 10 и И). Резкое снижение Од у латуни Л-68 делает ее нрактическп равнопрочной с медью уже при температуре около бОО С. Наиболее прочным в области высоких тем1гератур оказывается сплав Бр.Х 0,,5.  [c.330]


Влияние водорода на сварные соединения из алюминия гораздо сильнее, чем на медь и ее сплавы, так как растворимость водорода ничтожна в твердом алюминии и его сплавах, а изменение ее в процессе кристаллизации очень велико. В отличие от меди, алюминий почти не растворяет свой тугоплавкий окисел А1гОз, который всегда образуется на свариваемых кромках и на присадочном металле. Окисные включения (пленки) способствуют зарождению газовых пузырей и образованию пор.  [c.335]

Основной проблемой свариваемости стали с медью и ее сплавами является образование встали, находящейся в контакте с жидкой медью или сплавом меди, околошовных трещин, заполненных цветным металлом (рнс. 241). Возникновение подобных трещин объясняется расклинивающим действием жидкой меди, проникающей в микронадрывы встали по границам зерен при одновременном действии и термических напряжений растяжения. Начальное проникновение меди по границам зерен стали, протекающее под влиянием капиллярного эффекта, диффузии и растворения стали в меди, облегчается далее тем, что поверхностная энергия на границе Fey — Си примерно в два раза меньше, чем на границе Fey—Fey. Поэтому прочность границы зерна, находящейся в контакте с жидкой медью, оказывается сниженной, а развивающиеся напряжения растяжения — достаточными для окончательного разрыва ослабленной границы и мгновенного заполнения медью образовавшейся трещины. Проникновение цветного металла в сталь на глубину > 2,5 мм в некоторых случаях снижает статическую, и особенно усталостную, прочность стали.  [c.405]

Свариваемость меди в значительной степени зависит от наличия в металле различных примесе й висмута, свинца, сурьмы, мышьяка. Чистая электролитическая медь обладает наилучшей свариваемостью. Расплавленная медь легко окисляется, образуя оксид меди Сц20(/), и легко поглощает водород и оксид углерода. При охлаждении в объеме металла выделяются пузырьки паров воды и углекислого- газа, которые не растворяются в- меди. Эти газы, расширяясь, создают большое внутреннее давление и приводят к образованию мелких межкристаллитных трещин. Это явление получило название водородной болезни меди. Сварку меди и ее сплавов производят только  [c.129]

Для сварки алюминия, меди и латуни применяют проволоки или нарубленные из листа полоски, соответствующие по составу свариваемому материалу. При сварке латуни лучше применять специальные присадочные проволоки с добавками кремния и олова, которые препятствуют испарению цинка и увеличивают проплавляющую способность газового пламени, разжижая сварочную ванну. При сварке медных сплавов введение в сварочную проволоку бора делает ее само-флюсующейся. Образующийся борный ангидрид В2О3 связывает окислы меди и цинка СиО и ZnO в борно-кислые соли, переходящие в шлак. Можно сваривать без флюсов.  [c.58]


Смотреть страницы где упоминается термин Свариваемость меди и ее сплавов : [c.371]    [c.327]    [c.327]    [c.581]    [c.205]    [c.107]    [c.294]    [c.134]    [c.219]    [c.431]    [c.24]   
Смотреть главы в:

Сварка и свариваемые материалы Том 1  -> Свариваемость меди и ее сплавов

Технологичность конструкций  -> Свариваемость меди и ее сплавов



ПОИСК



Медиана

Медь Свариваемость

Медь и сплавы

Медь и сплавы меди

Свариваемость меди и сплавов на ее основе

Свариваемость меди и сплавов на основе меди

Свариваемость стали с медью и ее сплавами

см Свариваемость



© 2025 Mash-xxl.info Реклама на сайте