Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия образования зоны сплавления при сварке

УСЛОВИЯ ОБРАЗОВАНИЯ ЗОНЫ СПЛАВЛЕНИЯ ПРИ СВАРКЕ  [c.144]

По расположению в сварном соединении различают горячие трещины в шве, в зоне сплавления, в околошовной зоне, а также в зависимости от ориентировки их относительно направления сварки — продольные и поперечные. Во всех случаях вероятность образования трещин определяется соотношением пластических свойств соединений в т.и.х. и темпом деформаций. Однако степень влияния отдельных технологических и металлургических факторов для каждого вида может быть существенно различной в связи с неодинаковыми условиями формирования химической и физической неоднородности в различных зонах сварного соединения. Особо следует выделить трещины повторного нагрева, образующиеся в ранее наложенных валиках при многослойной сварке в результате термодеформационного воздействия от сварки последующих слоев.  [c.481]


Создавая метод и машину ИМЕТ-4, ее авторы пошли на ряд упрощений в отличие от метода ЛТП МВТУ здесь не учитывается взаимодействие между металлом шва и основным металлом в зоне сплавления, испытание проводят на тонких плоских образцах и пр. Эти упрощения были приняты для того, чтобы в более чистом виде проанализировать влияние вредных примесей и систем легирования на сопротивление сплавов образованию холодных трещин. Помимо этого, появилась возможность расширить условия испытаний в такие смежные области технологий, как термическая (закалка) и термомеханическая обработки, которые отличаются от сварки не только параметрами термических циклов, но и условиями деформации. В то же время испытания по методу ИМЕТ-4 не позволяют получить точную технологическую оценку поведения металла при сварке с применением того или иного присадочного материала и флюса.  [c.162]

Наиболее заметные структурные превращения претерпевает так называемый участок неполного расплавления (двухфазная область твердый — жидкий металл). При сварке чугуна без подогрева при скоростях охлаждения более 5° С/с в интервале 300— 500° С у границы сплавления образуются прослойки ледебурита и мартенсита. На образование прослойки ледебурита влияет химический состав сварочной ванны. Применение электродов и сварочной проволоки, содержащих в своем составе никель или такие графитизаторы, как углерод и кремний, способствует уменьшению размера ледебуритной прослойки и в определенных условиях (при соответствующей концентрации этих элементов и режиме сварки) — полному ее устранению (рис. 9-17). Наличие мартенсита в околошовной зоне и ширина мартенситной прослойки не зависят от химического состава электродного металла, а определяются главным образом режимом сварки, т. е. скоростью охлаждения в интервале наименьшей устойчивости аустенита.  [c.504]

В ряде случаев возникают серьезные затруднения с обеспечением надлежащих прочностных и пластических свойств металла, околошовной зоны и зоны сплавления. Трудности получения качественной зоны сплавления возникают, например, в случае использования для сварки среднелегированных сталей высоколегированного электродного металла, обеспечивающего получение шва с аустенитной структурой. Большая разница по химическому составу между металлом шва и основным металлом при определенных условиях может привести к образованию в зоне сплавления непластичной хрупкой прослойки и обезуглероживанию основного металла в участках, непосредственно примыкающих к границе сплавления.  [c.530]


Этот процесс является основным при сварке деталей из термопластов. Именно в нем закладываются условия для последующего протекания механизма образования сварного соединения тепловая обработка материала торцов и начала течения расплава полимера в вязкотекучем состоянии для последующего диффузионного их соединения в зоне сплавления стыка глубина, ширина и форма зоны проплавленных торцов, характеризующаяся фазовыми превращениями материала, и др.  [c.34]

Как показало исследование свойств наплавленного металла с переменным содержанием хрома в пределах 1- -11% [54], наиболее предпочтительным является применение для сварных соединений перлитной стали с хромистой сварочных материалов перлитного класса. Это обусловлено тем, что наплавленный металл с содержанием хрома в пределах 1- 5% (переходные составы перлитного шва) имеет более высокий уровень пластичности и ударной вязкости по сравнению с составами, которые могут быть при применении электродов на основе 12% хрома. Перлитный металл шва в средних слоях и в участках, примыкающих к перлитной стали, обладает меньшей склонностью к закалке и образованию трещин в процессе сварки по сравнению с металлом швов, содержащих около 12% хрома. Кроме того, при использовании перлитных электродов, как будет показано ниже, меньше интенсивность развития диффузионных прослоек в зоне сплавления после термообработки или в условиях эксплуатации при высоких температурах.  [c.144]

При исследовании зоны сплавления разнородных материалов необходимо прежде всего рассмотреть условия ее образования в сварном соединении. Как уже отмечалось, кристаллизация шва в процессе сварки может рассматриваться как кристаллизация на анизотропной подкладке [1, 78, 133], которой являются оплавленные зерна основного металла. Образование зародышей новой фазы (металла шва) и рост их на этой подкладке совершаются по принципу ориентационного и размерного соответствия [143]. В том слу-144  [c.144]

Появление переходных прослоек в зоне сплавления может снижать работоспособность сварных соединений и в условиях работы при комнатной или умеренных- температурах. Как отмечалось, наличие хрупких участков в переходных слоях шва может вызвать образование трещин при сварке [21] и в процессе работы сварных 180  [c.180]

КМ, армированные частицами, короткими волокнами, НК, могут быть сварены встык. Равнопрочность таких соединений основному КМ достигается при выборе соответствующих способов и режимов сварки, а также сварочных материалов и при условии, что КМ изготовлены методами жидкофазной технологии. Если для изготовления КМ применены методы порошковой металлургии, то в зоне сварки возможно образование участков повышенной пористости (например, у границы сплавления), и прочность таких соединений снижается.  [c.172]

Проблема сварки разнородных сталей особенно остро встала в котлостроении, где по условиям эксплуатации энергетических установок необходимо соединять высоколегированный и низколегированный металлы. В процессе работы при высоких температурах или термической обработки (высоком отпуске) на границе сплавления высоколегированного шва и низколегированной стали образуется зона, отличающаяся своими физико-механическими свойствами от свариваемых металлов. В этой зоне резко снижается пластичность и повышается твердость металла за счет образования карбидной прослойки, что может способствовать преждевременному разрушению конструкции.  [c.380]

В настоящее время накоплен обширный экспериментальный материал по данным испытания различных легированных сталей, например марганцевых, кремниевомарганцевых, хромомолибденовых, с применением количественных (ИМЕТ-4, ЛТП МВТУ) и технологических проб (Рива, TS, крестовая). При этом для каждой из систем легирования изучено влияние содержания различных легирующих элементов (С, Мп, Si, Сг, Мо, В и др.) и вредных примесей (S, Р и др.) на сопротивляемость образованию холодных трещин, и определены эмпирические зависимости эквивалента углерода, устанавливающие допустимые соотношения между элементами, входящими в состав сталей. Эти соотношения не имеют универсального характера, так как зависят от ряда факторов, например конструкции сварного соединения и его жесткости, структурного класса присадочного или электродного материалов, способа и режимов сварки. Эти факторы изменяют не только уровень напряжений и характер их распределения в сварных соединениях, но и кинетику структурных изменений, степень развития химической неоднородности по границам зерен околошовной зоны вблизи линии сплавления со швом, содержание водорода и другие особенности, обусловливающие образование холодных трещин при сварке. Наиболее существенны при прочих равных условиях жесткость соединения и структурный класс металла шва. В связи с этим использование данных об эквивалентах углерода ограничивается обычно частными случаями, связанными с предварительными сравнительными оценками различных плавок стали или способов их выплавки в исследовательских целях. После этого, как правило, проводятся испытания стали с помощью технологических проб, в наибольшей степени соответствующих реальным условиям сварки конструкции соединений и технологическим факторам.  [c.174]


Аналогичное заключение следует кз рассмотрения рив. 11.2. Если принять, что легирующим элементом Ме является никель, то представленные линии а, а, а" и б будут характеризовать распределение никеля в участке сплавления при сварке безникеле-вой низкоуглеродистой стали присадочными материалами g различным содержанием никеля. Условие образования участка сплавления о мартенситом определяется содержанием в нем никеля (см. рис. 11.4). При содержании никеля ниже определенного количества и наличии прочих легирующих элементов сталь перестает быть чисто аустенитной, в ее структуре появляется мартенсит, количество которого возрастает с понижением содержания никеля до определенного уровня. Если это минимальное содержание никеля соответствует штриховой линии ка рис. 11.2, тогда отрезки О—Xi О—О—Хз и О—Х будут характеризовать размер зоны сплавления с мартенситной структурой. Размер участка мартенсита уменьшается с увеличением содержания никеля в присадочном материале О—< О—Х.. < О—Х. ) и с уменьшением степени проплавления О—Х. < i --vYi).  [c.293]

Сварка с регулированием термических циклов (РТЦ) за с ет сопутствующего охлаждения, одновременно с уменьшением околошовных участков подкалки, сужает области термопластических деформаций при сварке и уменьшает несовершенство кристаллического строения, измельчает структуру зон сплавления. Кроме этого, более быстротечное высокотемпературное состояние при сварке стали 15Х5М с РТЦ со-путствуюш им охлаждением способствует образованию в ЗТВ промежуточных более равновесных структур закалки бей-нитного характера с равномерно распределенными частицами карбидов по телу зерен, а увеличение скорости охлаждения при сварке создает условия гомогенизации аустенитного шва. При этом избыточные фазы выделяются в виде отдельных разобщенных включений или участков и получается мелкодисперсная более однородная структура шва повышенных снойств.  [c.151]

Одной из основных причин снижения эксплуатационной надежности разнородных сварных соединений является хрупкое разрушение в зоне сплавления. Для предупреждения этого явления рекомендуется применять сварочные материалы с повышенным запасом аустенитности, лучше всего электроды на никелевой основе. Образование и развитие в зоне сплавления переходных прослоек, появляюш,ихся в результате диффузии углерода из малолегированного основного металла в аустенитный шов при сварке, термообработке и эксплуатации конструкции в условиях высоких температур, также может способствовать снижению прочности разнородных соединений. Переходные прослойки в виде обезуглероженной зоны крупных зерен феррита со стороны малолегированного металла и высокотвердой прослойки со стороны аустенитного шва образуются, начиная с температуры 420— 450° С и наибольшей толщины достигают во время выдержки при температуре 800—850° С.  [c.151]

Природа подобных трещин в районе зоны сплавления до настоящего времени полностью не выяснена. Можно предполагать, что одной из причин, вызывающих эти трещины, является образование субмикродефектов по границам зерен околошовной зоны в условиях нагрева при сварке до температур, близких к температуре плавления. Указанные дефекты являются в дальнейшем очагами начала эксплуатационных разрушений. Вероятно также выделение примесей по границам зерен, ослабляющих их прочность. Развитию подобных трещин может также способствовать неравномерность свойств основного металла и шва, наличие местных ослаблений сечения, вызванных проточками под подкладные кольца в районе стыка, перераспределение углерода и других легирующих элементов в зоне сплавления [17], а также воздействие высоких дополнительных напряжений изгиба.  [c.40]

Сварку чугуна применяют в основном при ремонтных работах — восстановление чугунных деталей после поломки или износа, исправление дефектов литья и т. п. Выбор наилучшего способа сварки определяют констрл к-цией детали и условиями ее работы, химическим составом чугуна и характером дефекта. Накопленный опыт позволяет сделать вьшод, что газовая сварка является одним из надежных способов, позволяющих получить наплавленный металл, по свойствам близкий к основному металлу. Это обусловлено тем, что при газовой сварке происходит более равномерный нагрев и охлаждение свариваемой детали, чем при электродуговой сварке. Поэтому газовая сварка обеспечивает лучшие условия для грл-фитизации углерода в наплавленном металле, делает менее вероятным появление в зоне сплавления отбеленного чугуна, а также уменьшает внутренние напряжения в свариваемом изделии и возможность образования трещин. Для получения качественного сварного соединения деталей из чугуна необходимо помнить следующее  [c.127]

При сварке разнородных сталей указанными проволоками под флюсами АН-26 или АН-15 получается металл шва, стойкий против образования кристаллизационных трещин, несмотря на чисто аустенитную структуру и высокое содержание в нем никеля. Он также не склонен к сигматизации, сравнительно мало охрупчивается при старении и обладает требуемыми механическими свойствами как в обычных условиях, так и в условиях длительного воздействия высоких температур. Металл зоны сплавления в соединениях, выполненных этими проволоками, обладает внолне стабильной структурой (рис. 10-47) и свойствами, если они содержат менее легированную сталь и эксплуатируются при температуре, соответствующей той группе, для которой предназначена используемая проволока.  [c.634]

Известно, что отрицательная температура окружающего воздуха влияет на скорость охлаждения сварочной ванны и металла зоны термического влияния (ЗТВ). С понижением температуры скорость охлаждения увеличивается, что приводит к ухудшению надежности монтажных стыков. Прежде всего, увеличение скорости кристаллизации сварочной ванны уменьшает ее объем. Так, уменьшение температуры от +20 до -50 °С сокращает длительность пребывания сварочной ванны в жидком состоянии примерно на 10 %. Это сказывается на процессе кристаллизации металла, так как отставание диффузионных процессов от кристаллизационных приводит к перавпо-веспому структурному состоянию металла нри этом усиливаются процессы ликвации и сегрегации химических элементов, возрастает вероятность засорения сварного шва неметаллическими и шлаковыми включениями, не успевающими полностью выделиться в шлак, и образования нор, вызванных газами, в частности водородом. Увеличение скорости охлаждения сварного соединения может привести к образованию закалочных структур в ЗТВ, резко снижающих пластичность металла и повышающих склонность к хрупкому разрушению. Это особенно может проявляться при сварке низколегированных сталей повышенной и высокой прочности, а также среднелегпровап-ных сталей. Прп этом вероятность хрупкого разрушения тем больше, чем ниже температура окружающего воздуха. В этих условиях незначительный концентратор напряжений в шве пли на ЛИНИН сплавления имеет большую тенденцию к развитию, которое может привести к зарождению трещины и ее распространению вплоть до разрушения трубопровода.  [c.44]


Роет зародышей кристаллизации связан с концентрационным переохлаждением. Оно развивается только в сплавах или в сильно загрязненных металлах. Расплав кристаллизуется в некотором интервале температур, а легирующие элементы или примеси снижают температуру ликвидуса Они накапливаются перед фронтом кристаллизации и снижают температуру ликвидуса еще в большей степени (рие. 3.1). Этот эффект повышается е увеличением скорости кристаллизации. Благоприятные условия в этом отношении создаются при электрошла-ковой сварке (малые температурные градиенты) и при контактной точечной сварке (высокая скорость кристаллизации). Б соответствии с объемным распределением градиентов температур и скоростей кристаллизации в сварном шве непрерывно возрастает концентрационное переохлаждение от границы сплавления к середине шва, В этой зоне возникает наибольшая вероятность образования зародышей кристаллизации, в результате чего при определенных условиях в середине сварного шва веледетвие концентрационного переохлаждения может возникнуть второй фронт кристаллизации,  [c.30]

Зачистка под сварку. Легированные стали, поступающие на сварку, могут иметь на поверхности слой тугоплавкой окалины, образовавшейся при термической обработке. Для получения большего провара и чистоты переходной зоны кромки легированной стали необходимо тщательно зачищать от окайины, смазки, шлака и других загрязнений. Зачистку следует делать не только в местах сплавления металлов, но и на расстоянии не менее 10—15 мм от шва. Хорошие результаты дает дробеструйная очистка, а также травление. С кромок и прилегающих к шву закрытых мест следует также тщательно удалять влагу, жиры и различные масла, так как наличие этих примесей способствует образованию пористости шва. Влага удаляется просушиванием или подогревом металла до 110—120°. Масло и жиры удаляются обтиркой, а также промывкой в щелочах, а иногда и прокаливанием, если это допустимо по условиям термической обработки стали.  [c.192]


Смотреть страницы где упоминается термин Условия образования зоны сплавления при сварке : [c.428]   
Смотреть главы в:

Сварка жаропрочных нержавеющих сталей  -> Условия образования зоны сплавления при сварке



ПОИСК



Зона сплавления

Сплавление жил



© 2025 Mash-xxl.info Реклама на сайте