Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы детектирования

Детекторы — устройства, измеряющие и регистрирующие результаты хроматографического анализа. Система детектирования состоит из трех элементов — детектора, усилителя и регистратора.  [c.301]

В физике плазмы рентгеновская спектроскопия применяется для диагностики источников двух типов с большим размером плазменного объема 0,1—1,0 м (например, токамаков) и источников малого размера 0,1—1,0 мм (лазерной плазмы, плазменного фокуса, вакуумной искры). Температура этих источников одного порядка — от единиц до нескольких десятков миллионов градусов, и основная часть линейчатого и непрерывного излучения приходится на мягкий рентгеновский диапазон от нескольких сотен электронвольт до нескольких килоэлектронвольт. В термоядерных установках проводятся исследования Н, Не, Ы, Ве — подобных ионов легких (О, С, Н) и тяжелых (Т1, N1, Ре) элементов, по которым определяются электронная и ионная температуры, ионный состав и состояние равновесия, а также исследуются макроскопические процессы и кинетика плазмы. Исследуемые линии принадлежат ионам примесей, поступающих в плазменный объем из стенок или остаточного газа, поэтому их интенсивность по сравнению с континуумом относительно невелика. Для разделения линий ионов различных элементов и кратностей необходимо разрешение порядка (1 — 3). 10 в отдельных, относительно узких, участках спектра. По изменению интенсивностей линий ионов различных кратностей можно судить об изменениях температуры, плотности и ионного состава плазмы по объему. Для таких измерений спектральная аппаратура должна иметь пространственное разрешение порядка 1 см для токамаков и 1 мкм для лазерной плазмы. Горячая плазма существует непродолжительное время (характерное время изменения параметров плазмы токамаков порядка 1 мс, лазерной плазмы — 10 нс), поэтому приборы должны обладать достаточно большой апертурой и многоканальной системой детектирования. Поскольку большинство координатно-чувствительных детекторов высокого разрешения имеют плоскую чувствительную поверхность, фокальная поверхность спектрометра тоже должна быть плоской, и угол падения излучения к ней должен по возможности быть небольшим.  [c.286]


Все усложняющиеся задачи по повышению качества промышленной продукции, надежности объектов требуют дальнейшего совершенствования методов и средств НК и Д. Применение классических методов, да еще по отдельности, уже неэффективно. Ряд новых задач не поддается решению стандартными методами НК. Появились весьма сложные матричные системы детектирования физических полей в пространстве, различные комбинации методов, в обработку пошли группы физических параметров.  [c.5]

Полупроводниковые детекторы в многоэлементных системах детектирования работают в токовом режиме как твердотельные камеры. Обладая высокой эффективностью при небольших толщинах, СёТе-детекторы не требуют тщательного отбора, строгой ориентации и могут эффективно использоваться при построении многоэлементных систем. В отличие от них 81(Ь0 ППД имеют  [c.636]

В некоторых типах реализован способ формирования изображения за счет синхронного движения системы детектирования и источника излучения. Важным требованием в этом случае является необходимость фиксации объекта контроля на время формирования изображения.  [c.637]

Рис. 15.25. Системы детектирования вихрей Рис. 15.25. Системы детектирования вихрей
Рис. 7.11.8. Спектральные зависимости мощности шумов (полоса 1 МГц) полоскового ДГС-лазера, работающего в непрерывном режиме при комнатной температуре [193]. Порог генерации равен 372 мА. Спектры скорректированы с учетом частотной зависимости системы детектирования. Рис. 7.11.8. Спектральные зависимости мощности шумов (полоса 1 МГц) полоскового ДГС-лазера, работающего в непрерывном режиме при комнатной температуре [193]. <a href="/info/192056">Порог генерации</a> равен 372 мА. Спектры скорректированы с учетом частотной зависимости системы детектирования.
Напротив ПГ в горизонтальной плоскости точка детектирования должна быть расположена по крайней мере на расстоянии / о=300 см. от оси ПГ. Выберем место положения ее напротив центральной части ПГ. Расстояние от центра сферических источников до точки детектирования будет равно 385, 290 и 255 см для камер ПГ, двух крайних участков трубной системы и двух центральных участков трубной системы соответственно. Мощность излучений шести сферических источников для напорной камеры 1,12-10 2 квант сек, для четырех участков трубной системы 2,9-10" 2,6-10" 2,3-10" и  [c.320]


Наиболее распространенным методом детектирования быстрых частиц является использование телескопов из нескольких счетчиков С, расположенных на одной оси и включенных в схему совпадений (рис. 28). Как известно, схема совпадений устроена таким образом, что она пропускает на выходное устройство только сумму всех импульсов, одновременно возникающих во всех счетчиках, и не пропускает одиночных, двойных и других импульсов. Такая система позволяет с большой точностью  [c.65]

Изложенный метод можно усовершенствовать, применив фазовую синхронизацию , использующую когерентный радиоимпульс. Этот радиоимпульс формируется из сигнала генератора непрерывных колебаний, имеюш,его автоматическую подстройку частоты (АПЧ). Система АПЧ в качестве управляющего сигнала использует напряжение с выхода квадратурного фазового детектора, на вход которого поступает отраженный импульс. Применение в данном случае фазового детектирования делает систему нечувствительной к изменениям амплитуды отраженных импульсов. Измерения в этой системе сводятся к слежению за частотой непрерывного генератора и вычислению соответствующего значения скорости звука. Для определения исходной скорости звука нужно разомкнуть петлю обратной связи системы АПЧ и, меняя частоту генератора вручную, найти несколько частотных точек, отвечающих противофазной интерференции, как это делается при реализации метода длинного импульса . Если для работы системы АПЧ использовать отраженный импульс, отстоящий от начала серии примерно на 1000 мкс, то изложенным методом можно достичь чувствительности 10 .  [c.416]

Подобная электрическая схема используется также для возбуждения и детектирования крутильных колебаний. Крутильные и продольные колебания возбуждаются в образце одновременно. Не наблюдали взаимного влияния этих колебаний, которое могло бы вызвать изменение резонансной частоты. При отключении генератора крутильных колебаний частота продольных колебаний не меняется (аппаратура позволяет легко зарегистрировать изменение на 1 Гц частоты 20 кГц). Вследствие недостаточной электроизоляции обеих схем в цепях детектирования появляются небольшие наводки от генератора крутильных колебаний, даже когда частота не отвечает резонансной. Для устранения этих помех применены схемы компенсации. Изменение резонансной частоты с температурой регистрировали с помощью специальной системы. Она выполняет следующие функции обеспечивает подачу необходимого напряжения на нагреватели для получения требуемой температуры по достижении заданной температуры регистрирует показания двух температурных датчиков и резонансные частоты продольных и крутильных колебаний и обеспечивает изменение напряжения на нагревателе для достижения следующей температурной ступени. Измерения проводили с интервалом температур 3 К.  [c.381]

Наиб, простой способ регистрации осколков и их пространств, распределений — по дефектам образованных осколками в приповерхностных слоях нек-рых твёрдых прозрачных материалах (см. Диэлектрический детектор). Т. к. эффективность у камер деления низкая, они используются для детектирования интенсивных потоков нейтронов, напр. в системах управления ядерными реакторами.  [c.280]

Я. э. высокого временного разрешения (10 с) и отбора регистрируемых событий с учётом их геометрии (пространств. распределения) и кинематики. Необходимость одноврем. измерения большого числа параметров (амплитуды сигнала, времени его прихода, координаты точки детектирования частицы, суммарного энерговыделения и др.) привела к тому, что именно в Я э. впервые были разработаны схемы аналого-цифрового преобразования, применены цифровые методы накопления информации, многоканальный и многомерный анализ, использованы магистрально-модульные системы, ЭВМ в реальном масштабе времени (см. Информатика, ЭВМ) и локальные вычислит, сети.  [c.661]

Измерение форм собственных колебаний (консервативной системы) практически осуществляют измерением распределения Re q или Im 4о для первой гармоники колебаний на резонансной частоте, хотя в более простых случаях, когда не требуется большой точности, можно измерять и распределение значений модуля сигнала q или (7о. При фазовом сдвиге ф = 8 разница Im % и q составляет 1 %, при ф = = 24° 10 %. Анализ по первой гармонике позволяет устранить влияние искажений формы сигнала, вызванных нелинейностью или иными причинами, на результаты измерений посредством выделения составляющих для основной частоты колебаний и осуществляется способом синхронного детектирования.  [c.338]


Оптические несуш,ие частоты можно модулировать столь же разнообразными способами, как и обычные несуш,ие, т. е. по амплитуде (интенсивности), фазе, частоте или методом однополосной модуляции (с переносом частоты). Модуляцию можно осу-ш,ествлять либо внутри резонатора лазера, либо внешними элементами системы. Механизмом модуляции может служить сдвиг фаз, обусловленный электрооптическим эффектом, акустическое взаимодействие, а также целый ряд других явлений. В данном параграфе мы изложим прямые или гетеродинные методы детектирования модуляции эти методы позволяют определять коэффициент модуляции независимо от ее характера. Сначала излагается очень простой метод измерений на постоянном токе который позволяет косвенным путем определить высокочастотный сдвиг фаз во внешнем электрооптическом модуляторе. В этом вводном примере рассматривается, пожалуй, самый ценный метод определения модуляции, поскольку многие внешние оптические модуляторы — электрооптического типа.  [c.487]

Для формирования многоэлементной одномерной системы детектирования используются в основном три типа детекторов комбинированная структура сцинтиллятор-фотодиод, где в качестве детектирующего элемента применяются 2п8е(Те) и С81(Т1), диффузионнодрейфовые ППД на основе 81(Ы) и ППД на основе бинарного соединения СёТе. Основные характеристики материалов детекторов приведены в табл. 5, а в табл. 6 представлены параметры современных детекторов, применяемых для создания сканирующих систем радиационной интроскопии.  [c.636]

В аналоговом режиме отдельные импульсы усредняются. Поскольку ток от каждого импульса вносит вклад в средний ано/Ц1ый ток, одновременный приход импульсов не создает затруднений. При аналоговом детектировании коэффициент усиления системы детектирования можно регулировать изменением либо коэффициента усилителя, либо напряжения и а фотоумножителе. Благодаря этому можно регистрировать сигналы в широком диапазоне уровней, но беспокоясь о нелинейности. Кроме того, точность отдельных измерений оказывается выше, чем в методе счета фотонов, в основном из-за более высоких полных уровней сигналов. Заметим, что для высокоточных аналоговых измерений требуются стабильные усилители и высоковольтные блоки питания, однако это в иастояшее время ие является серьезным огра-ничениом. /Ья измерений методом счета фотонов такие условия не требуются.  [c.49]

Привален алгоритм реше1шя обратной граничной задачи теплопроводности для тйл простой Фюрмы на основе решения нехарактеристической задачи Коши, Граничная обратная задача теплопроводности, представляемая системой обыкновенных дифференциальных уравнений, рассматривается в . классе задач оптимального управления. Для построения алгоритма р= иения граничной ОЗТ иыл применен метод синхронного детектирования.  [c.148]

Резкая и нелинейная зависимость электрического сопротивления при переходе из нормального в сверхпроводящее состояние позволяет создавать высокочувствительные фотонриемники (болометры) с порогом чувствительности ж 10-1 Вт па 1 Гц полосы пропускания регистрирующей системы,, сверхпроводящие выпрямители, предназначенные для детектирования высо-кочастотнсго модулированного сигнала и обладающие низкими собственными шумами.  [c.208]

Оптическое детектирование парамагнитного резонанса. В условиях накопления поляризации ядер на электронные спины кроме внеш. поля действует эффективное поле ядер Нд, что влияет на вид зависимостей р (Я) и позволяет оптически детектировать ЯМР в малых объёмах ( 10 см ) при поглощении света в приповерхностном слое с толщиной меньше 1 мки. Значит, поляризация ядер, к-рая может быть получена в условиях оптич. охлаждения их спин-системы, позволяет обнаружить ЯМР в слабых внеш. магн. полях. Уменьшение Нд в результате деполяризации ядер в условиях резонанса приводит к изменению поляризации люминесценции, что и делает возможным оптич. детектирование I3MP. При этом удаётся наблюдать резонансные переходы с одноврем. переворотом спинов как в одной, так и в разных подрешётках кристалла (рис. 5).  [c.439]

Разработана целая серия широкополосных усилительных Э.Л., к-рые используются в электронной аппаратуре для усиления импульсных сигналов, имеющих очень широкий частотный спектр. Для детектирования, усиления и измерения слабых токов (на уровне 10 А) применяются электрометрич. Э.л. с высоким входным сопротивлением. Такие лампы дают усиление по току в сотни миллионов раз. Э.л. со спец. характеристиками используются в аналоговых счётно-решающих устройствах, в системах автома-тич. регулирования, в быстродействующих амплитудных дискриминаторах и др.  [c.568]

Заманчивой альтернативой традиционным межсоединениям являются оптоэлектронные системы, обеспечивающие возможность генерации, модуляции, усиления, передачи, а также детектирования световых сигналов. Потенциальные возможности таких систем трудно переоценить. Элементарная ячейка монолитного оптоэлектронного устройства представляет собой результат интегрирования, в пределах одной пластины источника излучения, волновода и фотоприемника. Необходимым условием успешного использования оптоэлектронных устройств является их хорощее геометрическое и функциональное совмещение с элементами УСБИС. При этом технология их изготовления должна хорошо совмещаться с технологией изготовления самой интегральной схемы и необходимо максимально использовать хорошо отработанные процессы и оборудование кремниевых приборных производств [29].  [c.96]

Идея голографических фильтров была впервые поставлена на обсуждение А. Ван дер Люгтом в 1963 г. [61] (более доступна его статья [И]) в связи с их возможным использованием при детектировании (обнаружении) сигнала. С того времени сфера применения фильтров была расширена и включает коррекцию ( выравнивание ) аберраций в оптических системах, компенсацию движения изображения и т.д. Прежде чем рассматривать применение, нам необходимо ознакомиться с основными принципами работы фильтра этого типа.  [c.116]


Рассмотрим еще один важный вопрос — необходимость разрабатывать статистическую теорию связи с использованием ОКГ. Может быть следовало бы автоматически перенести результаты статистической теории для радиодиапазона на системы оптического диапазона, тем более, что классическая теория статистической радиосвязи и радиолокации к настоящему времени хорошо развита для относительно низкочастотного электромагнитного спектра, включая СВЧ диапазон. Однако непосредственное приложение и применение этой теории при обнаружении и детектировании сигналов оптического диапазона сталкивается и ограничивается целым ря.цом фундаментальных проблем, включающих квантовые эффекты, сверхузкую направленность лучей, дифракционные эффекты и распределения полей в дальней зоне, шероховатость и сложность конфигураций связных ретрансляторов и отражающих целей, широким использованием энергетического метода приема и др.  [c.11]

ОКУ) и другие элементы, назначение которых очевидно из их наименований. Штрихованные соединения между блоками соответствуют световым связям блоки, обведенные штриховыми линиями, включаются в зависимости от используемых методов модуляции (внутренней или внешней) и приема (прямое детектирование или супергетеродикное). Особенностями системы являются прежде всего диапазон рабочих длин волн и когерентность излучения. Эти особенности приводят к необходимости создания устройств точного нацеливания антенн передатчика и приемника, так как диаграммы направленности их могут определяться значениями нескольких дуговых секунд (при малых весах и габаритах антенных систем). Случай широкой диаграммы направленности антенны передатчика имеет место, когда сигнал ОКГ является сложным и состоит из большого числа типов колебаний (мод). Однако, даже если лазер передатчика работает на одном типе колебаний, часто необходимо иметь широкий луч, хотя бы для успешного решения задачи нацеливания (перехвата) и слежения за связным ретранслятором 1). В то же время узкие диаграммы направленности позволяют реализовать существенно большие дальности связи, однако и здесь возникают свои проблемы, связанные с обзором больших объемов пространства узкими лучами за короткие интервалы времени, и проблемы стабилизации направления луча. Создание прецизионных быстродействующих устройств нацеливания узких лучей, обеспечение одномодового режима работы ОКГ, разработка точных устройств сопровождения позволят полностью реализовать экстремальные характеристики направленности лазерных систем. В этом случае сечение луча может приблизительно совпадать с поверхностью апертуры приемной системы, поверхностью ретранслятора или цели кроме того, случай полного перекрытия целью сечения луча имеет место при посадке объекта на земную или лунную поверхность.  [c.17]

Поскольку волоконные световоды обычно используются для передачи каких-либо данных и телефонных разговоров, важно понять, как ФКМ воздействует на работу систем оптической связи [47, 48]. В многоканальной (с частотным уплотнением информации) системе Как ФКМ, так и ФСМ будут изменять фазу оптической волны в каждом из каналов. В случаях когда информация передается за 4ev амплитудной модуляции и некогерентно демодулируе1ся. а также в системах связи с прямым детектированием нелинейные изменения фазы малосущественны. Однако, если используются методы когерентной демодуляции, такие изменения фазы могут сильно ограни-" ить работу системы. Для того чтобы лучше поня гь это ограничение.  [c.211]

Теперь рассмотрим случай когерентной системы связи с амплитудной модуляцией. Если используется фазочувствительное (гомо-динное) детектирование, фаза ф будет изменяться от одного битового импульса к другому в зависимости от битовой структуры соседних каналов. В худшем случае сдвиг фазы, вызванный ФКМ, принимает вид  [c.213]

На начальной стадии работ локатор был собран по схеме, показанной на рис. 6.1. Излучение лазерного передатчика на выходе второго каскада усиления 8 имело среднюю мощность около 1 кВт при ширине спектра всего 20 Гц за время измерения 50 мс. Такая высокая монохроматичность излучения передатчика была необходима для обеспечения эффективного когерентного (гетеродинного) детектирования отраженного от цели излучения. Лазерный пучок диаметром 4,5 см проходил через нутатор 7, расширялся стоявшим за ним телескопом 6 до диаметра 15 см и с помощью системы неподвижных зеркал 3 и поворотного зеркала 1 направлялся на цель. Расходимость зондирующего излучения не превышала 0,6. В качестве средства внешнего целеуказания для лазерного локатора использовался радиолокатор совместно с пассивным инфракрасным радиометром. Для облегчения поиска цели в поле ошибок целеуказания применялся телевизир 4.  [c.229]

Этот принцип положен в основу отечественного геодезического дальномера КДГ-3. Функциональная схема дальномера приведена на рис. 22. Назначение блоков понятно из рисунка. Источником излучения служит полупроводниковый диод из арсенида галлия. Его излучение модулируется задающим генератором и направляется на зеркальный отражатель, установленный на противопо- ложном конце измеряемой линии. Отраженное излучение принимается приемной системой и фокусируется на фотоэлектронном умножителе. Особенностью дальномера является то, что процессы фазового детектирования и гетеродинирования сигналов происходят непосредственно в околокатодном пространстве ФЭУ. Эти процессы осуществляются таким образом. Часть напряжения от задающего генератора подается на смеситель. Одновременно на него же подается напряжение от стабилизированного кварцами гетеродина. На выходе смесителя образуется промежуточная частота 100 кГц, которая через фазовращатель подается на специальный электрод у фото-  [c.57]

Функциональная схема лазерного локатора типа ОПДАР [43] представлена, на рис. 44. Он предназначен для слежения за ракетами на активном участке их полета. Тактические требования определяют незначительную дальность действия локатора, поэтому на нем установлен газовый лазер, работающий на гелий-неоно-вой смеси, излучающий электромагнитную энергию на волне 0,6328 мкм при выходной мощности всего 0,01 Вт. Лазер работает в непрерывном режиме, но его излучение модулируется с частотой 100 МГц. Передающая оптическая система собрана из оптических элементов по схеме Кассагрена, что обеспечивает очень незначительную ширину расходимости луча. Локатор монтируется на основании, относительно которого он может с помощью следящей системы устанавливаться в нужном направлении с высокой точностью. Эта следящая система управляется сигналами, которые поступают через кодирующее устройство. Разрядность кода составляет 21 единицу двоичной информации, что позволяет устанавливать локатор в нужном направлении с точностью около одной угловой секунды. Приемная оптическая система имеет диаметр входной линзы 300 мм. В ней установлен интерференционный фильтр, предназначенный для подавления фоновых помех, а также устройство, обеспечивающее фазовое детектирование отраженных ракетой сигналов.  [c.141]

Оптическая однополосная модуляция с подавлением несуш ей (ОППН) выгодна при передаче информации в системах с оптическим гетеродинным детектированием [65]. Пользуясь на входе одночастотным световым пучком большой мощности, можно также добиться эффективного преобразования в излучение со сдвинутой частотой [72]. Это применяется для генерации входных пучков со смешанными частотами, смещенными относительно частоты лазера, но так, что пучки когерентны с лазерным источником. Во всех таких случаях желательно измерять степень подавления несущей и нежелательной боковой полосы.  [c.495]


В связи с ограниченным объемом книги мы рассмотрим здесь только вопрос о прямом детектировании АМ-светового потока. Но многое из того, что будет сказано ниже, относится также и к оптическому гетеродинированию и гомодинированию или когерентному детектированию , при которых производится фотосмешение принимаемого светового пучка с излучением оптического гетеродина. В настояш,ее время методы оптического гетеродинирования находятся в стадии быстрого развития и должны иметь большое значение в лазерных системах будуш,его (см. 12).  [c.499]

В работах [84, 85] была продемонстрирована возможность прямого детектирования ЧМ-светового пучка, промодулирован-ного СВЧ-частотами, без преобразования в АМ-сигнал. Для этого использовались фотоэлемент с поперечной волной и диспергирующая система. Поскольку такие приборы еще не выпускаются промышленностью, уместно привести краткое описание их конструкции и работы.  [c.513]


Смотреть страницы где упоминается термин Системы детектирования : [c.578]    [c.235]    [c.44]    [c.400]    [c.118]    [c.17]    [c.277]    [c.586]    [c.587]    [c.628]    [c.441]    [c.491]    [c.341]    [c.397]    [c.298]    [c.85]    [c.455]   
Смотреть главы в:

Физика простых жидкостей  -> Системы детектирования



ПОИСК



Детектирование



© 2025 Mash-xxl.info Реклама на сайте