Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кюри 20 — Характеристики

При расчетах защиты от у-излучения объемных источников, достаточно знать удельные у-эквиваленты в миллиграмм-эквивалентах Ка на литр и эффективный спектральный состав у-излучения. Для решения проблемы защиты персонала от источников внутреннего облучения и определения предельно допустимых выбросов радиоактивных изотопов во внешнюю среду с вентиляционным воздухом и жидкими отходами, а также для многочисленных технологических целей необходимо знать изотопный состав источников и удельную активность в кюри на литр. В отдельных случаях, например для характеристики поля у-излучения активной зоны реактора, в которой кроме продуктов, деления имеются мгновенные и захватные у-кванты, а также наведенная активность, вместо у-эквивалента пользуются другой физической величиной мощностью источника в мегаэлектронвольтах в секунду или у-квантах в секунду на единичный объем или массу. В Приложении II за основу приняты удельные у-эквиваленты, которые широко применяются в практике проектирования защиты от у-излучения смеси продуктов деления.  [c.189]


Прямое использование цикла Карно для измерения температуры обычно приводит к большим экспериментальным погрешностям. Поэтому разработаны практические методы воспроизведения термодинамической температуры, в которых связь между измеряемой величиной и температурой выводят на основе законов термодинамики или статистической физики. К числу таких соотношений относятся уравнение состояния газа, закон Кюри для парамагнетиков, зависимость скорости звука в газе от температуры, зависимость напряжения тепловых шумов на электрическом сопротивлении от температуры, закон Стефана — Больцмана. Температурные шкалы, установленные с использованием указанных соотношений, зависят от свойств термометрического тела, что приводит к появлению таких характеристик шкалы, как воспроизводимость и точность. Кроме того, некоторые шкалы основаны на приближенно выполняющихся закономерностях возникает понятие инструментальной температуры (магнитной, цветовой и т. п.), отличной от термодинамической.  [c.172]

Промышленностью освоен выпуск свыше 25 марок ферритов с ППГ. Широкое распространение получили магний-марганцевые и литиевые ферриты со структурой шпинели. Для улучшения свойств используются легирование их ионами цинка, кальция, меди, натрия и др. Основные характеристики ферритов с ППГ следующие коэффициент прямоугольности йпу = 0,9 0,94 остаточная индукция Вг = 0,15 0,25 Тл, температура Кюри Гк = ПО ч--г- 250 °С (для магний-марганцевых ферритов) 550 630 С (для литиевых), коэрцитивная сила для ферритов, используемых в схемах автоматического управления, лежит в пределах 10—20 А/м, для материалов, используемых в вычислительной технике, — 100—1200 А/м.  [c.105]

Литиевые ферриты с ППГ. Достаточно приемлемые свойства прямоугольности получаются в литиевых ферритах с добавками цинка и никеля. Феррит, имеющий состав (Lio,455 -Zno,o5-Nio 4 Fe2,455)04 характеризуется значением р = 0,9, точка Кюри 0 = 590° С коэффициент квадратности Rs = 0,9. Коэффициент переключения 5ф около 110 мкк/м, коэрцитивная сила Яс = 160 aju. Наблюдается хорошая температурная стабильность свойств. Однако для получения требуемых характеристик необходимо строгое соблюдение состава феррита и определенное содержание кислорода в газовой среде при спекании, что осложняет технологию.  [c.259]

Магнитная проницаемость ферромагнитных материалов зависит от температуры, как показано на рис. 9-7, переходя через максимум при температурах, близких к температуре (точке) Кюри. Для чистого железа точка Кюри составляет 768 °С, для никеля 358 °С, для кобальта 1131 °С. При температурах выше точки Кюри области спонтанного намагничивания нарушаются тепловым движением и материал перестает быть магнитным. Для характеристики изменения магнитной проницаемости при из.менении температуры пользуются температурным коэффициентом магнитной проницаемости (К" )  [c.270]


Вопросу исследования магнитных свойств, в частности намагниченности насыщения и температуры Кюри, в наноструктурных материалах посвящен ряд исследований [57, 234, 256-260]. Эти характеристики магнитных материалов, в отличие от гистерезисных  [c.154]

Таким образом, консолидация наноструктурного Ni приводит к дополнительному значительному уменьшению стд и Тс по сравнению с измельченным в шаровой мельнице порошком, однако эта разница исчезает после высокотемпературного отжига при 723 К. Проведенные структурные исследования показали, что Ni как после измельчения в шаровой мельнице, так и после консолидации ИПД обладает наноструктурой с размером зерен около 20 нм. Тем не менее, эти состояния обладают различными магнитными свойствами. Как следует из анализа температурных зависимостей (Уа Т) для этих образцов (рис. 4.1 и 4.2), отношение намагниченностей образцов после измельчения в шаровой мельнице и отожженного при 1073 К равно 0,83. В то же время в случае наноструктурного Ni после ИПД это отношение только 0,7. Температуры Кюри этих образцов уменьшились на 13 К и 24 К соответственно. Таким образом, видно, что как намагниченность насыщения, так и температура Кюри этих образцов меньше, чем у хорошо отожженных образцов. Более того, в образце после ИПД эти изменения значительно больше. Все измерения выполнялись в аналогичных условиях. Таким образом, полученные результаты указывают на то, что обнаруженные значительные различия в магнитных характеристиках могут быть вызваны различиями в тонкой структуре, а также, возможно, в химическом составе образцов.  [c.157]

Ферриты — Кривые размагничивания 49—60 — Обозначение 192—Точка Кюри 20 — Характеристики 24  [c.528]

ФЕРРОМАГНЕТИК—вещество, в к-ром ниже определ. темп-ры (Кюри точка Тс) устанавливается ферромагн. порядок магнитных моментов атомов (ионов) в неметаллич. веществах и спиновых магн. моментов коллективизированных электронов в металлич. веществах (см. Ферромагнетизм). Наиб, важными характеристиками Ф. являются точка Кюри 7 с, атомный магн. момент Л/ при О К, уд. самопроизвольная (спонтанная) намагниченность М(1 (на 1 г) при О К и уд. намагниченность насыщения (на 1 см ) при О К. Среди чистых хим. элементов к Ф. относятся только 3 переходных З -металла — Fe, Со, Ni — и б редкоземельных металлов (РЗМ) — Od, ТЬ, Dy, Но, Ег и Тп1 (табл. 1). В 3< -металлах и РЗМ Gd реализуется  [c.299]

Значения точек Кюри, намагниченности насыщения и других характеристик различных сплавов приведены в [5].  [c.220]

Кроме магнитного момента необходимо рассмотреть еще одну важную характеристику аморфных магнитных сплавов — температуру Кюри. На рис. 5.10 и 5.11 приведены зависимости темпера-  [c.129]

При этом металлические стекла имеют характеристики упругости (модули Юнга Е и сдвига G), на 25...30 % более низкие по сравнению со свойствами сплавов в кристаллическом состоянии. Коэффициент теплового расширения части таких материалов близок к нулю. При переходе в аморфное состояние сплавов на основе переходных металлов (железа, кобальта, никеля) значительно снижаются намагниченность и температура Кюри. При комнатной температуре коэрцитивная сила и индукция насыщения магнитомягких металлических стекол несколько ниже, а удельное электрическое сопротивление на два-четыре порядка выше по сравнению с материалами в кристаллическом состоянии, т.е. уровень электромагнитных потерь в аморфных сплавах значительно ниже.  [c.317]

Ферро- и ферримагнитные вещества (в том числе и минералы) обладают рядом особенностей, отличающих их от диа- и парамагнетиков (приложения П1 и П2). К ним относятся зависимость намагниченности и магнитной восприимчивости от напряженности внешнего магнитного поля и от предшествующего магнитного состояния (гистерезис) достижение магнитного насыщения в сильных магнитных полях наличие областей самопроизвольного намагничивания доменов), имеющих собственную намагниченность почти до насыщения даже в отсутствии внешнего поля зависимость магнитных характеристик от температуры и существование особой температуры — точки Кюри, выше которой вещество теряет перечисленные особенности и становится парамагнетиком.  [c.160]


Плотность ферритов находится в пределах 3000...5000 кг/м . Большей плотности ферритов соответствуют лучшие магнитные характеристики. Удельное сопротивление ферритов — в пределах от 5-10 до 1-10 Ом м. Температура Кюри у ферритов составляет 450...550 °С.  [c.143]

Величиной, которая аналогично сжимаемости возрастает до бесконечности по мере приближения к точке Кюри, является магнитная восприимчивость X =(дМ I дН)т. Для характеристики скорости ее возрастания при Т - Тк пользуются показателями, обозначаемыми так же, как и в формуле (76.2), у и у  [c.410]

Для однодоменных кристаллов размагничивание идет только в результате вращения векторов намагничивания. Размер однодоменных кристаллов определяется формой кристалла, параметром кристаллической решетки и магнитными характеристиками (точкой Кюри в, константой анизотропии К и намагниченностью насыщения Ms). Для железа диаметр однодоменного кристалла равен 0,05 мкм.  [c.551]

Изменение состава по длине и диаметру кристалла НБС крайне нежелательно, поскольку его наиболее важные характеристики, такие, как температура Кюри, показатели преломления и температура фазового перехода, в сильной степени зависят от состава. Поэтому даже незначительная неоднородность такого вида может приводить к заметному ухудшению физических характеристик кристаллических образцов.  [c.136]

В табл. 7.7 приведены некоторые наиболее часто употребляемые конструкционные материалы топливной ампулы и теплового блока и их характеристики. При использовании в качестве топлива металлических плутония и кюрия в ампулы обычно вставляется оболочка из инертного металла для предотвращения взаимодействия топлива с конструкционными материалами. Чаще всего для этой цели используется тантал.  [c.154]

Скорость выделения радона с единицы ЭЭП определяют удельным эквивалентным радоновыделением УЭР [кюри/(секХ ЭЭП)]. Обычно эту характеристику определяют из экспериментальных наблюдений за дебитом радона на участках с хорошо известной величиной ЭЭП. Тогда проектная величина дебита радона равна  [c.209]

Пример И. В примере 10 при расчете защиты детектора Рц от источника И6 необходимая толщина защиты оказалась равной 12=68 см бетона. В настоящем примере ставится задача определить мощность дозы в точке детектора Р 2 (помещение ПЮ), если источником И5 (помещение П9) является урановый блочок массой 1 кг, облученный в реакторе на тепловых нейтронах в течение Г=120 дней и после выдержки i=30 дней. Для упрощения расчетов удельную мощность реактора примем равной ш= квт кг (обычно она бывает больще). Расстояние от источника до детектора Ь=4 м. Цель данного примера — проиллюстрировать применение формул для расчета мощности дозы за защитой й по радиационным характеристикам (удельной активности, спектральному составу), рассчитанным только для Г = оо. При этом необходимо рассчитать уровни излучения а) выраженные в единицах мощности экспозиционной дозы Р [мр1ч], если удельная активность Q выражена в единицах кюри или грамм-эквивалентах радия М-, б) в единицах интенсивности I [Мэе/ см -сек)], если удельная активность выражена в единицах силы источника 5 [Мэе/(сек-кг)]. Для контроля результаты расчета в примерах а и б надо сравнить между собой, а также с результатами расчета с использованием непосредственных радиационных характеристик для 7 = 120 дней и = 30 дней.  [c.339]

На рис. 27.84—27,87 даны графики зависимостей спонтанного магнитного момента и индукции насыщения от состава сплавов и температуры, а также температуры Кюри от состава сплавов. На рис. 27.84 и 27.86 величина N, отложенная на оси абсцисс, соответствует составу сплавов. Рисунок 27.88 дает представление о магнитострикции в материалах разных составов. На рис, 27.89, 27.90 приведены важные для применений характеристики начальной проницаемости и потерь при пе-ремагничиванни.  [c.640]

К наиболее распространенным комнонентам термисторов относится закись меди. Установлено [И], что Y-облучение монокристаллов закиси меди заметно не влияет на эффект Холла, электро- и фотопроводимость. Облучение осуществляли с помощью источника Со активностью 100 кюри при мощности дозы до 2,4-10 эрг1(г-сек). Более резкие изменения наблюдали в случае облучения кристаллов закиси меди быстрыми нейтронами, а через несколько дней после облучения интегральным потоком тепловых нейтронов нейтрон 1см был замечен переход характеристик от р-  [c.362]

В последнее десятилетие большое внимание специалистов, занимающихся созданием и исследованием новых материалов — физиков, материаловедов, механиков, — вызвали наноструктурные материалы (НСМ) [1-5]. Эти материалы обладают уникальной структурой и свойствами, многие из которых имеют непосредственный практический интерес. В наноструктурных материалах часто изменяются фундаментальные, обычно структурнонечувствительные характеристики, такие как упругие модули, температуры Кюри и Дебая, намагниченность насыщения и др. Это открывает перспективы улучшения существующих и создания принципиально новых конструкционных и функциональных материалов.  [c.5]

Зависимость интенсивности намагниченности насыщения от температуры у ферритов существенно отличается от аналогичной характеристики ферромагнетиков, Температура Нееля у ферримагнетнков обычно ниже, чем температура Кюри у ферромагнетиков. У некоторых ферритов, например у литий-хромферрита, наблюдается предсказанная Неелем аномалия температурной зависимости намагниченности насыщения. Различный характер температурной зависимости намагниченности подрешеток А п В (рис. 6) приводит к тому, что результирующая характеристика С при некоторой температуре компенсации Т1, лежащей ниже температуры Кюри Гк, проходит через нуль, так как магнитные моменты атомов подрешеток взаимно уравновешиваются.  [c.11]


Остановимся несколько подробнее на принципе равноприсутствия. Из принципа равноприсутствия как частный случай получается основной принцип термодинамики необратимых процессов —принцип Кюри для изотропных материалов. Согласно принципу равноприсутствия основные характеристики термомеханического процесса (тензор напряжений П, поток тепла внутренняя энергия и и энтропия s) должны быть функциями одного и того же набора независимых переменных (2, i, G, G, Т, Т., VT, VT), т. е.  [c.75]

А. кристаллов связана с симметрией их кристаллич. структуры (см. Кюри принцип, Неймана принцип, Симметрия кристаллов). Чтобы вещество обладало векторной характеристикой (напр., сдонтанной поляризацией в случае сегнетоэлектриков), его кристаллич, решётка не должна быть симметричной относительно преобразования инверсии, т. е. не должна обладать центром симметрии. Все кубич. кристаллы изотропны в отношении характеристик, описываемых симметричными тензорами 2-го ранга (напр., электропроводности  [c.84]

П. м. используются для изготовления пьезоэлектрических преобразователей раэл. назвачения в гидролокации, УЗ-технике (см. Ультразвук), акустоэлектронике, точной механике и др. Для изготовления пьезоэлемента выбирают П. м., сопоставляя их параметры и характеристики, к-рые определяют эффективность и стабильность работы пьезоэлектрич, преобразователя с учётом его назначения и условий эксплуатации, П. м. характеризуются след, величинами (табл.) матрицами пьезомодулей d и относительной диэлект-рич. проницаемости е , коэф. упругой податливости SE, скоростью распространения звуковых волн с, тангенсом угла диэлектрич. потерь tgo, механич. добротностью Qmi плотностью р, предельно допустимой темп-рой 0 (темп-ра Кюри для сегнетоэлектриков). Во мн. случаях оценивать П. м. удобнее след, параметрами 1) коэф. зл.-механич. связи (для квазистатич. режима, когда длина звуковой волны существенно превосходит размеры пьезоэлемента)  [c.189]

Ландау, экспериментально (в основном) подтверждается имеющиеся расхождения связываются с дефектами кристаллич. структуры и флуктуац. эффектами. С позиций совр. теории фазовых переходов 2-го рода, теория Ландау не полностью учитывает нарастание флуктуаций параметра порядка т] при Г Поэтому она неверна в непосредств. близости к Т . В результате зависимости характеристик кристалла от Т оказываются вблизи неаналитическими. Область, где отклонения от предсказаний теории Ландау велики, в большинстве случаев узка, но тем не менее следует ожидать вблизи Г , напр., отклонений от закона Кюри — Вейса (см. Критические показатели).  [c.478]

Ниже критич. темп-ры Т , (наир., Кюри точка для ферромагнетика или Нееля точки для антиферромагнетика) динамика намагниченности носит преимущественно не диффузионный, а волновой характер (см. Спиновые волны). Однако в условиях сильного затухания и малого времени жизни магпонов (Т близко к Т ) волновая динамика намагниченности сменяется диффузионной, что проявляется, в частности, в виде т. н. центрального (квазиупругого) пика в сечении критнч, магн, рассеяния нейтронов. Выше критич. темп-ры С. д. становится основным механизмом пространственного выравнивания неоднородной намагниченности. Особенности С. д. в парамагнитной области (Т > Г ) магнитоупорядоченных веществ по сравнению со С. д. в обычных парамагнетиках проявляется в критическом замедлении (аномальное возрастание вблизи времён магнитной релаксации). Аналогичными свойствами обладают н др. кинетич. и резонансные характеристики (напр., затухание ультразвука в магнетиках, ширина линии ЭПР и др.).  [c.632]

Для построе1Ния диаграммы состояния наиболее полезными магнитными характеристиками являются намагниченность насыщения в больших полях и точка Кюри. Намагниченностью данного образца принято считать магнитный момент, возникающий П ри внесении образца в магнитное поле и отнесенный к его объему или массе.  [c.304]

Первым сплавом такого типа был сплав 36ПХ (36% Ni и 12 % Сг), названный элинваром. К сожалению, этот сплав имеет недостатки. Во-первых, у него низкие значения механических характеристик, которые нельзя улучшить термической обработкой, так как у сплава устойчивая однофазная аустенитная структура. Во-вторых, у него невысокая температура точки Кюри ( 100°С), что ограничивает рабочий интервал температур.  [c.567]

Магнитные свойства железомарганцевых сплавов являются структурно-чувствительными характеристиками и обусловлены их фазовым составом. Из всех структурных составляющих в сплавах системы Fe—Мп ферромагнитна только а-фаза с ОЦК-решеткой. Влияние марганца на магнитные свойства а-сплавов показано в работе [114]. С увеличением содержания марганца от 1,4 до 10% магнитное насыщение 4я15 (1) и максимальная магнитная проницаемость ц (2) снижаются, а коэрцитивная сила Но (3) монотонно растет (рис. 26). При содержании марганца более 1,4% точка Кюри совпадает с температурой полиморфного 7ч=ьа-превращения, поэтому существует температурный гистерезис магнитного превращения, который  [c.71]

Все рассмотренные выше кислородно-октаэдрические сегнетоэлектрики являются сегнетоэлектриками смещения. В работе [Ц установлены справедливые для широкого круга материалов простые зкспериментальные соотношения между смещением гомополярного атома и макроскопическими сегнетоэлентрическими характеристиками такими, как температура Кюри и спонтанная поляризация Р,. В физическом аспекте эти экспериментальные соотношения отражают связь между энергиями колебания кристаллической решетки и образования сегнетоэлентрическо-го состояния.  [c.333]

Изотопные термоэле.ктрические генераторы на полонии -210. В рамках программы разработки первых космических изотопных генераторов в СССР было изготовлено несколько установок электрической мощностью до 10 вт, отличающихся конструкцией корпуса и способом прижатия термоэлементов к поверхности теплового блока. Один из этих генераторов был загружен полонием-210 активностью 7700 кюри и испытан на ресурс в течение 2000 ч. Другие установки прошли испытания с электронагревом, в которых были определены тепловые и электрические характеристики, надежность работы термоэлектрического преобразователя и генератора в целом.  [c.183]

Загрузка 2177 кюри полония-210 создавала мощность дозы на поверхности корпуса генератора 400 мр/ч по 7-излучению и 12 мбэр/ч по нейтронам. По нормам КАЭСШАдопустимая доза для рук равна 1500 мр/неделн. Следовательно, этот генератор можно было держать в руках около 4 ч в неделю. За время работы, равное периоду полураспада полония-210, генератор СНАП-ЗВ мог вырабатывать 9 квт-ч электроэнергии. Генераторы серии СНАП-ЗВ были подвергнуты испытаниям, имитирующим условия запуска ракеты и работы в космическом пространстве. Вибрационные испытания с электронагревом обнаружили падение к. п. д. до 3,6%. Через 10 мин после испытаний генератор восстанавливал свои прежние характеристики. Генератор испытывался также на статические ускорения до 15 g и на удар до 50 g со временем нарастания 1 мсек. Тепловой блок прошел испытания на удар (давление 73 кПсм ), испытывался также в пламени керосина и кислот, имитирующем пожар на стартовой площадке. Все модели генератора этой серии успешно выдержали испытания.  [c.194]


Смотреть страницы где упоминается термин Кюри 20 — Характеристики : [c.198]    [c.240]    [c.557]    [c.274]    [c.285]    [c.288]    [c.154]    [c.117]    [c.193]    [c.287]    [c.126]    [c.73]    [c.266]    [c.333]    [c.200]   
Материалы в приборостроении и автоматике (1982) -- [ c.24 ]



ПОИСК



Кюри)

Кюрий



© 2025 Mash-xxl.info Реклама на сайте