Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластическая деформация. Наклеп и рекристаллизация

ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ. НАКЛЕП И РЕКРИСТАЛЛИЗАЦИЯ  [c.122]

Следовательно, при пластическом деформировании выше температуры рекристаллизации упрочнение и наклеп металла, если и произойдут, то будут немедленно сниматься. Такая обработка, при которой нет упрочнения (наклепа), называется горячей обработкой давлением. Обработка давлением (пластическая деформация) ниже температуры рекристаллизации вызывает наклеп и называется холодной обработкой.  [c.87]


Для каждой температуры нагрева существует оптимальная величина предварительной пластической деформации (наклепа), обеспечивающей максимальное сопротивление усталости исследуемого сплава. С повышением температуры эта величина предварительной остаточной деформации уменьшается и при температуре, близкой к температуре начала рекристаллизации, положительный эффект деформационного упрочнения на усталостную прочность исчезает.  [c.199]

Наклеп и рекристаллизация. При пластической деформации изменяется не только форма и размеры металла, но также его внутреннее строение и свойства. Зерна разворачиваются, деформируются и сплющиваются, вытягиваясь в направлении деформации. Ориентация зерен вдоль направления деформации называется текстурой металла. Текстура вызывает анизотропию свойств вдоль  [c.27]

Рекристаллизацией называется процесс образования и роста новых зерен при нагреве наклепанного металла до определенной температуры (температуры начала рекристаллизации, см. ниже). Этот процесс протекает в две стадии. Различают рекристаллизацию первичную (обработки) и собирательную. Рекристаллизация первичная или обработки заключается в образовании зародышей и росте новых равновесных зерен с неискаженной кристаллической решеткой. Наиболее вероятно, что новые зерна возникают у границ блоков и зерен, пакетов скольжения внутри зерен и т. д., где решетка металла была наиболее сильно искажена при пластической деформации (наклепе). Количество новых зерен постепенно увеличивается и, в конечном счете, в структуре не остается старых деформированных зерен.  [c.130]

Наклеп и рекристаллизация мета-1ла. Холодная пластическая деформация вызывает образование первичной (строчечной) волокнистой микроструктуры металла с сохранением формы вытянутых в направлении деформации зерен металла и ф и з п ч е с к о е упрочнение, или н а к л е п, металла за счет образования новых дислокаций, дробления зерен и искривления плоскостей скольжения.  [c.150]

Повышение твердости, вызываемое пластической деформацией осаждаемого нагретого металла, незначительно. При осаждении нагретой распыленной стали выше 750—800° наклеп будет полностью устраняться одновременно протекающим процессом рекристаллизации. Следовательно, пластическую деформацию при высокой температуре можно рассматривать как два параллельно протекающих процесса возникновение наклепа и рекристаллизацию.  [c.121]

Пластические свойства — свойства, характеризующие способность металла к деформированию. На пластические свойства металла оказывают влияние его состав, температура деформации, скорость деформации, форма и размеры деформируемой полосы, сочетание процессов наклепа и рекристаллизации и др.  [c.233]


При незначительном нагревании упрочненного металла (у стали 200...300 °С) восстанавливается упорядоченная кристаллическая решетка, причем прочность и твердость несколько снижаются, а пластичность повышается. Структура металла при этом не меняется. При более высоких температурах нагрева начинается восстановление металла. Изменение структуры вследствие нагрева после холодной пластической деформации металла называется рекристаллизацией. Наименьшей температурой рекристаллизации (порогом рекристаллизации) является температура, при которой твердость металла резко снижается, а пластичность повышается. Для примерного расчета этой температуры температура плавления металла, умножается на 0,4. При увеличении деформации температура рекристаллизации уменьшается. Если температура пластической деформации выше температуры рекристаллизации, то упрочнения (наклепа) металла не происходит.  [c.102]

Рекристаллизация. Технологические операции, применяемые нри изготовлении деталей котельных агрегатов и их монтаже, сообщают металлу значительные пластические деформации (наклеп), ухудшая его механические свойства и вызывая значительные внутренние напряжения. Наклеп металла возникает в деталях котельных агрегатов при различных операциях холодной обработки — гибке, вальцовке, штамповке, отбортовке, а также прп обработке изделий при недостаточно высоких температурах. Наклепанный металл обладает повышенной прочностью и твердостью и пониженной пластичностью и вязкостью.  [c.421]

Следовательно, при пластическом деформировании выше температуры рекристаллизации упрочнение и наклеп металла, если и произойдут, то будут немедленно сниматься. Такая обработка называется горячей обработкой давлением. Обработка давлением (пластическая деформация) ниже температуры рекристаллизации вызывает наклеп и называется холодной обработкой Следовательно, пластическое деформирование железа при 600° должно рассматриваться как горячая обработка, а при I 400° — как холодная. Для свинца и олова  [c.50]

Ползучесть обусловливается двумя процессами, протекающими при высокотемпературном длительном нагружении металла и действующими противоположно. Так, в процессе пластической деформации при высоких температурах происходит упрочнение (наклеп) металла, что повышает его сопротивление деформации. Одновременно при температуре нагрева металла, превышающей температуру его рекристаллизации, происходит разупрочнение металла вследствие рекристаллизации, что облегчает деформацию.  [c.199]

Пластическая деформация тугоплавких металлов производится при нагреве, поскольку температура перехода их в хрупкое состояние достаточно высока (табл. 13.18). При деформации в условиях нагрева до температур рекристаллизации возникает наклеп и волокнистая структура (рис. 13.25). Поэтому большинство тугоплавких металлов используется в состоянии наклепа.  [c.225]

Методы измерения твердости материалов прочно вошли в практику контроля качества и проведения научных исследований. Научная и практическая ценность этих измерений заключается в том, что по величине твердости можно судить о многих важных характеристиках свойств материалов, а часто и определять их. Из результатов многочисленных исследований следует, что твердость материала зависит от его кристаллической структуры и связана со многими механическими и физическими характеристиками, с пределами текучести, прочности, усталости, с ползучестью и длительной прочностью, сжимаемостью, коррелируется также с некоторыми магнитными и электрическими свойствами. Измерение твердости является простым, но высокочувствительным методом исследования механизма пластической деформации, старения, наклепа, возврата, рекристаллизации и других фазовых и структурных превращений.  [c.22]


В металле, претерпевающем пластическую деформацию в области упрочнения, в условиях определенного температурного режима происходят два противоположных процесса — упрочнение (наклеп) и разупрочнение (отдых и рекристаллизация). При этом при низких температурах превалирует первый, а при высоких — второй. Оба эти процесса весьма существенно влияют на протекание ползучести.  [c.284]

Рекристаллизация. Выше указывалось, что холодные пластические деформации металла сопровождаются его упрочнением и потерей пластичности, т. е. металл получает наклеп.  [c.39]

Образование новых зерен и резкое снижение плотности дислокаций приводит к высвобождению основной доли накопленной в процессе холодной пластической деформации энергии в объеме металла. Это является термодинамическим стимулом рекристаллизации обработки. В результате рекристаллизации наклеп практи-  [c.82]

Так, например, гомогенизационный (диффузионный) отжиг (см. рис. 4.6, а, 1) выравнивает и устраняет неоднородность химического состава (ликвации) отливок, слитков, наплавленного металла за счет протекания диффузионных процессов при высоких температурах. Чем сильнее неоднородность, тем более продолжительной должна быть выдержка при высокой температуре. Рекристаллизационный отжиг (см. рис. 4.6, а, 2), который включает нафев металла выше температуры его рекристаллизации (примерно до 0,5 от температуры его плавления), дает возможность устранить структурную неоднородность (текстуру) и упрочнение (наклеп), вызванные предшествующей холодной пластической деформацией, и повысить пластичность.  [c.486]

Холодной деформацией называют такую, которую проводят при температурах ниже температуры рекристаллизации (0,15...0,2 Т . Холодная пластическая деформация характеризуется непрерывным возрастанием плотности дислокаций, что обеспечивает создание наклепа и текстуры.  [c.136]

Свойства поверхностного слоя формируются под действием пластической деформации и нагрева обрабатываемого металла в процессе резания (см. рис. 31.1, а). В зоне опережающего упрочнения перед режущей кромкой инструмента ЬОМ в результате первичной пластической деформации происходит наклеп металла. В результате трения и вторичной деформации при контактировании с задней поверхностью (С в зоне ОРТ) инструмента материал испытывает деформации растяжения в тонком поверхностном слое, при этом наклеп металла возрастает до -15%. Сопутствующий нагрев деформированного металла до температур (0,2—0,3) Тпл вызывает возврат, а до температур выше 0,4 Гпл — рекристаллизацию с разупрочнением упрочненного слоя. Особенно существенное влияние оказывает нагрев при Скоростной лезвийной обработке и шлифовании. Нагрев создает предпосылки для процессов взаимной диффузии обрабатываемого и инструментального материалов и химического взаимодействия с элементами смазочно-охлаждающих веществ.  [c.569]

Основы теории жаропрочности. На поведение металла при высоких температурах оказывает влияние ряд накладывающихся друг Ha- друга процессов, например, пластическая деформация и упрочнение вследствие наклепа, разупрочнение благодаря возврату первого рода, полигонизация, рекристаллизация, диффузионные процессы и фазовые превращения.  [c.393]

Степень и скорость деформации оказывают на металл одновременно упрочняющее и разупрочняющее действия. Так, с увеличением степени деформации, с одной стороны, увеличивается наклеп металла, а следовательно, ухудшается его пластичность, но, с другой стороны, увеличение степени деформации интенсифицирует процесс рекристаллизации, что ведет к разупрочнению металла и улучшению его пластичности. Что касается скорости деформации, то ее увеличение уменьшает время протекания процесса рекристаллизации, а значит, ухудшает пластичность металла. Однако с повышением скорости деформации увеличивается количество выделившейся при деформировании теплоты, которая не успевает рассеяться в окружающую среду, нагревает металл и тем самым улучшает его пластические свойства.  [c.286]

НО производить как в холодном, так и в горячем состоянии. В процессе пластической деформации металла в холодном состоянии вследствие деформирования микроструктуры твердость и хрупкость металла непрерывно увеличиваются, а пластичность и вязкость уменьшаются. Эти изменения свойств называют(наклепом). Они могут быть устранены, например с помощью термообра- тки (отжига). Процесс замены деформированных, вытянутых зерен новыми, равноосными, происходящий при определенных температурах, называют рекристаллизацией. Она происходит при температурах, лежащих выше так называемого температурного порога рекристаллизации (см. раздел 1.3). Горячая обработка давлением производится при температуре выше порога рекристаллизации, холодная — ниже. При температурах несколько ниже температурного порога рекристаллизации наблюдается явление, называемое возвратом. При возврате (отдыхе) размеры и форма деформированных, вытянутых зерен не изменяются, но в значительной степени снимаются остаточные напряжения, возникающие при литье, обработке давлением и т. д.  [c.299]

Нагрев при 450—650° С вызывает сильное изменение прочности за счет возврата и частичного перехода мартенсита в аусте-нит, что подтверждается значительным уменьшением В—Я. При 700° С отмечается небольшое упрочнение вследствие выделения карбидов по границам зерен и по плоскостям пластической деформации. При нагреве выше 900° С снимается полностью наклеп вследствие рекристаллизации и повышается пластичность за счет растворения карбидов хрома.  [c.314]

Существует несколько теорий, объясняющих природу ползучести металлов. Хорошее совпадение с экспериментами дает теория наклепа и рекристаллизации. В нагруженном поликристаллическом металле вследствие различной ориентировки зерен по отношению к действующим напряжениям возникает значительная перегрузка одних зерен и недогрузка других. В перегруженных зернах происходит пластическая деформация. Они разгружаются и одновременно упрочняются в результате наклепа. Далее пластическая деформация распространяется на непродеформировавшиеся зерна. Упрочнившиеся в первый момент зерна через некоторое время разупроч-няются вследствие рекристаллизации. В них опять возникает пластическая деформация, они опять упрочняются и т. д. При этом в образце или детали происходит постепенное накопление пластической деформации.  [c.69]


Surfa e alterations — Поверхностные изменения. Изменения на поверхности материала вследствие механической обработки или при шлифовке. Поверхностные изменения бывают механические (например, пластическая деформация, наклеп, трещины и т. д.), металлургические (например, фазовые превращения, двойни-кование, рекристаллизация и неотпущенный или переотпущенный мартенсит), химические (например, межкристаллитная коррозия, хрупкость или питтинговая коррозия), термические (подвергшаяся тепловому воздействию зона, оплавление) и электрические изменения поверхности (изменение проводимости или теплопроводности).  [c.1058]

При пластической деформации (наклепе) простых металлов структура их претерпевает значительные изменения (см. п. 16) зерна металла размельчаются и становятся вытянутыми. Отжигом наклепанного металла удается восстановить равноосную форму зерен. Такой отжиг, как нам уже известно, называется рекристаллизаци-онным. Это по сушеству единственный вид термической обработки, которому могут подвергаться простые металлы. Закалке простые металлы подвергаться не могут в их структуре не происходит тех глубоких изменений, которые дают возможность произвести закалку. Образно выражаясь, в структуре простых металлов закаливаться нечему.  [c.68]

Рекристаллизация первичная (обработки) заключа ется в образовании зародышей и росте новых равновес ных зерен с неискаженной кристаллической решеткой. Наиболее вероятно, что новые зерна возникают у границ блоков и зерен, пакетов скольжения внутри зерен и т. д., где решетка металла была наиболее сильно искажена при пластической деформации (наклепе). Количество новых зерен постепенно увеличивается и, в конечном счете, в структуре не остается старых деформированных зерен.  [c.199]

В процессе формирования при обработке резанием ПС подвергается воздействию упругопластических деформаций и тепла, выделяющегося в результате пластических деформаций металла и трения. Повышение температуры сопровождается повышением пластических свойств металла, что способствует более глубокому упрочнению ПС. С другой стороны, с повышением температуры интенсифицируются процессы возврата в ре1фисталлизации, происходит более активное разупрочнение (отдых) металла. Конечная степень и глубина упрочнения ПС при обработке резанием определяются степенью влияния процессов упрочнения и разупрочнения. Если температура ПС доходит до температуры рекристаллизации, то наклеп полностью снимается. Однако при этом металл ПС может не вернуться в исходное состояние. Он может приобрести более крупнозернистую структуру в результате ре1фисталлизации или структуру закалки (с более высокой, чем основой металл микротвердостью) в случае интенсивного охлаждения.  [c.132]

К первой группе относятся процессы нагрева металла для устранения неустойчивого состояния (наклепа), возникающего вследствие предварит кой обработки методами холодной пластической деформации. Эт Рвид термообработки основан на процессах возврата, рекристаллизации и гомогенизации и является отжигом первого рода (рекристаллизационным отжигом).  [c.111]

Пластическая деформация при температуре ниже температуры рекристаллизации приводит к наклепу поверхностного слоя - его упрочнению, при котором кристаллы сильно деформируются и поворачиваются осями наиболыпей прочности вдоль направления деформации, т е. в направлении скольжения. В то же время у самой поверхности структура несколько ослаблена, микротвердость у поверхности также снижается, увеличиваясь по мере удаления от поверхности и достигая максимума на некоторой глубине. На рис. 4.4 приведены экспериментальные данные но изменению микротвердости, полученные при испытании алюминиевого сплава В95 в паре с композиционным материалом на основе политетрафторэтилена.  [c.85]

Термическая обработка, не сопровождающаяся фазовыми превращениями, встречается при обработке чистых металлов или однофазных сплавов, наблюдающихся в системах с неограниченной растворимостью компонентов в твердом состоянии (см. рис. 70), в системах сплавов с ограниченной растворимостью компонентов при концентрациях последних, определяемых отрезками А—F и Б—G (см. рис. 72), а также в системах сплавов, имеющих ЭБтектондную структуру (см. рис. 77). Термическая обработка при нагреве последних ниже критической точки Асх для всех указанных случаев, состоящая из нагрева сплавов, исключающих фазовые превращения, с последующим медленным охлаждением (обычно с печью) называется отжигом первого рода. Отжиг первого рода применяют для устранения наклепа и волокнистой структуры металлов и сплавов ранее прошедщих холодную пластическую деформацию. Таким образом, при отжиге первого рода в зависимости от температуры нагрева могут происходить процессы возврата и рекристаллизации, ведущие к снятию напряжений и к разупрочнению.  [c.106]

В самом деле, как только произойдет некоторая пластическая деформация металла под нагрузкой, металл получит наклеп и упрочнится, вследствие чего деформация его под неизменившейся нагрузкой должна прекратиться. Но если рабочая температура металла достаточно высока, то в нем возникает явление рекристаллизации и металл разупроч-няется, приобретая прежние свойства, т. е. после рекристаллизации вновь возникает пластическая деформация, и 42  [c.42]

В тех случаях, когда в восстановительных технологиях для восстановления геометрии (размеров, формы) изделий используется пластическая деформация значительных объемов металла и в несколько переходов, требуется рекристаллизационный отжиг. Он снимает наклеп и восстанавливает пластичность металла, исключает трещинообразованне. Теоретическая температура рекристаллизации металлов (темпе-  [c.502]

При горячей (0,7...0,75 Т обработке давлением одновременно с пластической деформацией протекает рекристаллизация, которая продолжается и после деформации до остьшания материала ниже температуры рекристаллизации. Процессы полигонизации и рекристаллизации, происходящие одновременно с деформацией, называют динамическими, так как их эффекты, связанные с разупрочнением, непрерывно чередуются с упрочнением, вызываемым горячим наклепом.  [c.136]

Дефектом неправильной термической обработки быстрорежущей стали является чрезвычайно крупнозернистый так называемый нафталиновый излом (фиг. 229) он юявляется ббычно после повторной закалки без предварительного отжига. По исследованиям В. Д. Садовского и других, при образовании аустенитной структуры объемные изменения вызывают ее пластическую деформацию и наклеп. Последующая рекристаллизация, происходящая при очень высокой температуре и связанная с состоянием карбидных частичек, может сопровождаться гигантским ростом зерна и образованием нафталинового излома. Увеличение скорости нагрева при перекалке позволяет избежать разрастания зерна. Вообще нафталиновый излом устранить трудно, напрймер, для его устранения необходимо шестикратное повторение операции отпуска При 760° С и изотермического отжига.  [c.383]

Дефекты, созданные пластической деформацией, весьма устойчивы и сохраняются в течение длительного времени при нагреве в области суб-критических температур. Так, при 600°С полное снятие наклепа достигается лишь после 3,5 ч, а при 700°С - после 1,5-ч вьщержки [ 74]. Обращает на себя внимание то обстоятельство, что повышенная твердость сохраняется и при протекании начальных стадий рекристаллизации. Так, в деформированной стали 20 после вьщержки при 700°С в течение 30 мин рекристаллизация проявляется как рентгенографически (на линиях появляются точечные рефлексы), так и металлографически, а твердость сохраняется на уровне НВ 240 при НВ 137 в отожженном состоянии. При этом, кяк видно из рис. 25, а -> -превращение заметно ускоряется по сравнению с неотпушенной сталью (ср. кривые 1 я 3). По-видимому, это связано с появлением большого количества субграниц вследствие рекристаллизации ферритной матрицы и сфероидизации карбидов, тго, как известно, облегчает зарождение новой фазы, поскольку гетерогенное образование зародыша на границах требует меньшей энергии. Получение же при этом того же предельного количества аустенита, что и для неотпущенной стали, свидетельствует о сохранении при указанном отпуске значительной части искажений решетки. Удлинение выдержки, естественно, снижает избыточную энергию системы и приводит к уменьшению предельного количества аустенита (см. рис. 25, кривые 4-6).  [c.56]


Очень существенным является различная зависимость скорости процессов полигониэации и рекристаллизации от степени деформации. При медленном нагреве после слабой деформации полигониза1у1я успевает завершиться до рекристаллизации, тогда как после сильной деформации рекристаллизация всегда начинается раньше, и полигонизация практически вообще не реализуется. Несмотря на то, что все описанные положения выведены на основании изучения поведения при нагреве пластически деформированного металла, по-видимому, их можно полностью применить и к материалам, испытавшим фазовый наклеп в процессе полиморфного превращения, хотя, конечно, характер распределения дислокаций при фазовом наклепе может существенно отличаться от их распределения при пластической деформации.  [c.96]

Hot working — Горячая обработка. (1) Пластическая деформация металла при такой температуре и степени деформации, при которых рекристаллизация происходит одновременно с деформацией без какого бы то ни было наклепа. Также упоминается как горячая ковка и горячее формирование. (2) Управляемая операция для формирования заготовки при температурах выще температуры рекристаллизации.  [c.979]


Смотреть страницы где упоминается термин Пластическая деформация. Наклеп и рекристаллизация : [c.4]    [c.41]    [c.56]    [c.136]    [c.11]    [c.164]    [c.182]    [c.233]   
Смотреть главы в:

Технология металлов  -> Пластическая деформация. Наклеп и рекристаллизация

Холодная прокатка стальных труб  -> Пластическая деформация. Наклеп и рекристаллизация



ПОИСК



Деформация и рекристаллизация

Деформация пластическая

Наклеп

ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И РЕКРИСТАЛЛИЗАЦИЯ Пластическая деформация и рекристаллизация

Пластическая деформаци

Пластическая деформация и рекристаллизация

Рекристаллизация



© 2025 Mash-xxl.info Реклама на сайте