Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрофизическая и электрохимическая обработка

Длительное время основным направлением комплексной автоматизации машиностроения было решение задач, связанных с массовым производством, где создано и внедрено множество машин-автоматов и полуавтоматов, автоматических и поточных линий 80—90 % таких деталей, как блоки цилиндров и головки блоков двигателей, валы коробки передач, массовые подшипники и др., обрабатываются на автоматических линиях. Однако это оборудование как правило является специальным, т. е. на обработку других деталей не переналаживается. Поэтому серийное производство длительно базировалось только на универсальном неавтоматизированном оборудовании (токарные станки, кривошипные прессы, сварочные посты и др.), малопроизводительном, но достаточно мобильном (быстро переналаживаемом на обработку других деталей). Переломным моментом в автоматизации серийного производства явилось появление машин с числовым программным управлением, сочетавших высокие производительность и мобильность благодаря наличию систем управления на электронной основе. Первоначально с ЧПУ строились главным образом металлорежущие станки-полуавтоматы токарной, фрезерной, расточной и сверлильной групп. В настоящее время с ЧПУ выпускаются сварочные машины, прессы, станки для электрофизической и электрохимической обработки, термическое оборудование и др. Можно отметить некоторые тенденции развития оборудования с ЧПУ, характерные для современного этапа научно-технического прогресса.  [c.9]


Производительность технологического оборудования есть количество годной продукции, выдаваемой в единицу времени. В дискретном производстве (машиностроении и приборостроении) наиболее характерна продукция, измеряемая штуками годных изделий (обработанных, собранных, проконтролированных и т. д.). Однако зачастую для мелких штучных изделий (болтов, гаек, конфет и др.) используются меры веса (или объема). Для некоторых типов оборудования (например, станки для электрофизической и электрохимической обработки) мерой производительности более удобно считать количество снимаемого материала. В непрерывном производстве (металлургии, химической промышленности и др.) количество выпущенной продукции оценивается, как правило, в единицах длины, объема или массы.  [c.63]

Переход к таким системам связан с созданием новой технологии. Уже в текущем пятилетии совершенствование, создание и внедрение новых технологических процессов являются одним из главных направлений повышения технологического уровня производства. Все шире распространяются новые методы формообразования — электрофизическая и электрохимическая обработка металлов. Механическая обработка вытесняется штамповкой, прокаткой, сваркой и другими методами.  [c.86]

С целью расширения области применения оборудования для электрофизической и электрохимической обработки в ЕСТПП разрабатывается комплекс стандартов, регламентирующих основные размеры и нормы точности этих станков. В первую очередь разрабатываются стандарты на станки электроэрозионные вырезные, анодно-механические и ультразвуковые.  [c.106]

Классы при электрофизической и электрохимической обработке комбинированной 978—999  [c.1026]

В зависимости от формы деталей, характера обрабатываемых повер.чностей и требований, предъявляемых к ним, их обработку можно производить различными способами механическим (точение, фрезерование, строгание, сверление, протягивание и шлифование и др.) электрофизическим и электрохимическим (обработка электроискровая, электроконтактная, анодно-механическая, химическая, химико-механическая, электрохимическая н др.), ультразвуковым, лучевыми (обработка электронным лучом, световым лучом и др.).  [c.469]

Значительным шагом вперед явилось широкое внедрение в производство методов электрофизической и электрохимической обработки, удельный вес которой при производстве стальных штампов и пресс-форм достигает 35—40%, а при изготовлении штампов и пресс-форм из твердых сплавов 60—80%.  [c.3]


Приводятся краткие данные о станках для электрофизической и электрохимической обработки.  [c.2]

В [фактике авторемонтного производства при восстановлении изношенных или поврежденных поверхностей деталей автомобилей нашли применение такие способы обработки, как механическая обработка деталей под ремонтный размер и постановка дополнительных ремонтных деталей. При обработке деталей, восстановленных различ-ным 1 способами наращивания металла, кроме механической обработки, применяют также различные виды электрофизической и электрохимической обработки.  [c.199]

На инструментальных заводах и в инструментальных цехах машиностроительных предприятий большое количество мелкофракционных отходов образуется при изготовлении и заточке инструмента из твердых сплавов и быстрорежущих сталей (инструментальные пылевидные отходы). Несколько десятков тысяч тонн в год металла теряется с пылевидными отходами на шарикоподшипниковых заводах при обработке шариковых заготовок абразивными и металлическими дисками. Кроме того, при электроимпульсной, электрогидравлической и некоторых других видах электрофизической и электрохимической обработки деталей из высоколегированных сплавов образуются также мелкофракционные металлоотходы, которые состоят из металлического порошка, смешанного с графитом и техническим маслом.  [c.405]

Научно-техническая литература, освещая методы электрофизической и электрохимической обработки материалов, не успевает за их бурным развитием и большей частью сообщает сведения, имеющие относительную давность. Причиной этого является то, что подготовка книг (монографий, справочников и т. п.) по данным вопросам требует длительного времени. В связи с таким положением большое значение для оперативной информации о новых достижениях в этой области приобретает выпуск сборников статей, имеющих короткий цикл подготовки к изданию и охватывающих широкую тематику. К категории таких изданий относится и настоящий сборник.  [c.3]

Электрофизическая и электрохимическая обработка. Электромеханическую обработку осуществляют в условиях местного нагрева снимаемого слоя металла при подводе в зону резания электрического тока большой силы (300—1000 А) и малого напряжения (1 —  [c.202]

В автоматизированном производстве к числу производственных рабочих относят наладчиков-операторов гибких производственных систем (ГПС). Их численность определяют в зависимости от числа ГПМ в их составе. Один оператор-наладчик обслуживает следующее число ГПМ [10, 15, 16] токарных - 3-4 карусельных - 2 сверлильно-фрезерно-расточных - 2-3 шлифовальных - 2-3 зубообрабатывающих - 3-4 ГПМ для электрофизической и электрохимической обработки - 3-4 сборочных - 2-3. Меньшие значения принимают при включении в ГПС до пяти ГПМ.  [c.36]

ТЕХНОЛОГИЧНОСТЬ ДЕТАЛЕЙ, ПОДВЕРГАЕМЫХ ЭЛЕКТРОФИЗИЧЕСКОЙ И ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКЕ  [c.146]

ЭЛЕКТРОФИЗИЧЕСКАЯ И ЭЛЕКТРОХИМИЧЕСКАЯ ОБРАБОТКА  [c.137]

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ  [c.400]

Для обработки тугоплавких и жаропрочных материалов применимы электрофизические и электрохимические методы обработки аналогичных литых материалов.  [c.441]

Электрофизические и электрохимические (ЭФХ) методы обработки появились в связи с применением сверхпрочных металлов и других материалов, трудно поддающихся традиционной обработке. Новые методы оказались эффективными для изготовления деталей сложной формы (штампов, пресс-форм), деталей малой жесткости или небольших размеров (с круглыми отверстиями, щелями), а также обработки в тех случаях, когда механическое воздействие на заготовку либо ограниченно, либо режущий инструмент (фреза, сверло, резец) не может быть подведен к обрабатываемой поверхности.  [c.305]

Применение наиболее прогрессивных способов механической обработки деталей оснастки. Это особенно относится к деталям сложным, а также изготовляемым из труднообрабатываемых материалов. Особую актуальность здесь приобретают электрофизические и электрохимические методы обработки, применяемые при изготовлении сложнейших внутренних полостей штампов горячей и холодной объемной штамповки, которые на некоторых предприятиях все еще обрабатываются по разметке методом фрезерования специальными фрезами.  [c.220]


Рассматривая вопросы стандартизации оборудования, следует также отметить, что появление новых материалов, труднообрабатываемых традиционными методами, и сложность конфигурации отдельных деталей потребовали изыскания принципиально новых методов обработки и создания для них соответствующих видов технологического оборудования. Эти методы, основанные на различных процессах энергетического воздействия на твердое тело, позволяют осуществить съем металла и получить изделия с заданными в чертежах формой и размерами так же, как это производится при механической обработке, но на другой технической основе и соответственно с другими технологическими возможностями. Все эти методы в совокупности носят название электрофизической и электрохимической обработки (ЭФЭХ).  [c.105]

Производительность технологического оборудования — количество годной продукции, выдаваемой в единицу времени. В дискретном производстве (мащиностроении и приборостроении) наиболее характерна продукция, измеряемая щтуками годных изделий (обработанных, собранных, проконтролированных и т. д.). Для некоторых типов оборудования (например, станков для электрофизической и электрохимической обработки) мерой производительности более удобно считать количество снимаемого материала.  [c.597]

В современном машиностроении используются самые разнообразные технологические процессы, в том числе и новые, основанные на принципах электрофизической и электрохимической обработки металлов. Новые методы обработки находят применение при производстве штампов, прессформ, твердосплавного инструмента, турбинных лопаток и других, в ряде случаев являясь единственно возможным способом для решения сложных технических задач. Однако эти процессы еще не получили своего должного развития применительно к условиям тяжелого машиностроения, и можно говорить только о первых опытах их использования для обработки крупных деталей.  [c.53]

В основу классифихацйи станков положен технологический принцип обработки — назначение станка,— характер обрабатываемых поверхностей, схема обработки и др. Эта классификация построена по десятичной системе. Все станки (за исключением специальных) подразделяются на десять групп, а группы, в сзою очередь, подразделяются на десять типов. Станки делят на токарные, сверлильные, расточные, для абразивной обработки для электрофизической и электрохимической обработки, резьбообрабатывающие, зубообрабатывающие, фрезерные, строгальные, долбежные, протяжные, разрезные и разные. Б группы объединяются станки по общности технологического метода обработки или близкие но назначению.  [c.231]

Ставки для электрофизической и электрохимической обработки. На станках для алектрофизической и электрохимической обработки изготовляют сложные штампы, пресс-формы, фильеры и другие детали, в том числе имеющие крайне малые размеры о гверстий (до 0.05 мм).  [c.14]

Двухкоординатный гидравлический следящий привод с клапаном динамического действия был использован ленинградским заводом Экономайзер при модернизации вертикально-фрезерного станка 642К. Гидравлическая схема модернизированного станка показана на рис. 8. Здесь, кроме гидроусилителя 4, цилиндра поперечной подачи 6 и цилиндра продольной подачи 7, имеется реверсивный золотник 3 с ручным управлением, при включении которого гидроцилиндр 1 обеспечивает вертикальную подачу инструмента относительно заготовки. Скорость вертикальной подачи регулируется дросселем 2, а скорость обхода по контуру — спаренным дросселем 5. Благодаря наличию вертикальной подачи и двухкоординатного следящего привода станок может выполнять не только контурные работы, но и объемное фрезерование различных деталей сложного профиля графитовых электродов для электрофизической и электрохимической обработки, турбинных  [c.17]

Сборник состоит из 63 статей, авторами которых являются ученые, сотрудники научно-исследовательских институтов, работники промышленности и ведущие специалисты в вопросах электрофизической и электрохимической обработки материалов. Каждая из статей посвящена конкретному вопросу данной области и, как правило, является оригинальной. Статьи объединены в следующие семь глав Электрохимическая обработка материалов , Электрохимикомеханическая обработка материалов , Нагрев металлов в электролите , Электроэрозионная обработка материалов , Электрогидравлическая обработка материалов ,  [c.3]

Бесконтактное взаимодействие инструмента с заготовкой существенно изменило вид лезвийного инструмента. Вместо резца с ограниченной режущей частью, используемого при обычном резании, при электрофизической и электрохимической обработке применяют профессивные инсфументы проволоку или ленту практически неофаниченной длины с непрерывно обновляемой рабочей частью.  [c.180]

В машиностроении часто возникают технологические проблемы, связанные с обработкой материалов и деталей, форму и состояние поверхностного слоя которых трудно получить механическими методами. К таким проблемам относится обработка весьма прочных, очень вязких, хрупких и неметаллических материалов, тонкостенных нежестких деталей, пазов и отверстий, имеющих размеры в несколько микрометров, поверхностей деталей с малой шероховатостью или малой толщиной дефектного поверхностного слоя. Подобные проблемы решаются применением электрофизических и электрохимических (ЭФЭХ) методов обработки, условная классификация которых дана на рис. 6.1. Для осуществления размерной обработки заготовок ЭФЭХ методами используют электрическую, химическую, звуковую, световую, лучевую и другие виды энергии.  [c.400]

Применение электрофизических и электрохимических способов размерной обработки материалов, предназначенных главным образом для отраслей новой техники, где широко применяются жаропрочные, нержавеющие, магнитные и другие высоколегированные стали и твердые сплавы, полупроводники, рубины, алмазы, кварц, ферриты и другие материалы, обработка которых обычными механическими способами затруднительна или часто невозможна. К числу электрофизических способов обработки относятся электроискровая, электроим-пульсная, электроконтактная и анодно-механическая.  [c.122]



Смотреть страницы где упоминается термин Электрофизическая и электрохимическая обработка : [c.11]    [c.232]    [c.228]    [c.58]    [c.137]    [c.578]    [c.308]    [c.128]    [c.1027]    [c.67]    [c.283]    [c.289]    [c.291]    [c.464]   
Смотреть главы в:

Технология изготовления штампов и пресс-форм Издание 2  -> Электрофизическая и электрохимическая обработка

Материаловедение  -> Электрофизическая и электрохимическая обработка



ПОИСК



Допуски на размеры, полученные электрофизическими и электрохимическими методами обработки материалов

Краткая характеристика электрофизических и электрохимических методов обработки

Металлы Электрофизические и электрохимические методы обработки

Оборудование для электрохимической, химической и электрофизической обработки и лакокрасочных покрытий

Обработка на электрофизических и электрохимических станках

Обработка на электрофизических и электрохимических станках ( А. Заставный)

Общая характеристика электрофизических и электрохимических методов размерной обработки

Опыт применения электрофизических и электрохимических методов обработки

Полуянов, А. Б. С о с е н к о. Электрофизические и электрохимические методы обработки

Понятие об электрофизических и электрохимических методах обработки

Риглел седьмой ЭЛЕКТРОФИЗИЧЕСКИЕ II ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ РАЗМЕРНОЙ ОБРАБОТКИ Метод эдектроэрозионной обработки металлов

Сплавы — Электрофизические электрохимические методы обработки

Станки для электрофизических и электрохимических методов обработки

Станки для электрофизических и электрохимических методов обработки (В. К. Тепинкичиев)

Станки для электрофизических и электрохимических способой обработки

Станки для электрохимических и электрофизических методов обработки (табл

Технологичность деталей, подвергаемых электрофизической и электрохимической обработке (М. В. Щербак, Е. Н. Лукашева)

Характеристика электрофизических и электрохимических методов обработки

Химическая обработка (В. П. Законников) Электрофизические и электрохимические методы обработки Электроэрозионная обработка В. К. Исаченко)

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ МАТЕРИАЛОВ (Л. Я Попилов)

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ФОРМООБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ ОБЩИЕ СВЕДЕНИЯ Электроэрозионные методы обработки металлов и сплавов

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ

ЭЛЕКТРОХИМИЧЕСКАЯ, ЭЛЕКТРОФИЗИЧЕСКАЯ, ЭЛЕКТРОМЕХАНИЧЕСКАЯ И ЛАЗЕРНАЯ ОБРАБОТКА

Электрофизическая и электрохимическая (ЭФЭК) обработк

Электрофизическая и электрохимическая обработка комбинированная

Электрофизическая обработк

Электрофизические и электрохимические методы i размерной обработки Общие сведения

Электрофизические и электрохимические методы обработки

Электрофизические и электрохимические методы обработки (И. Б. Ставицкий, Сагателян, В.Д. Проклова)

Электрофизические и электрохимические методы обработки металлов и сплавов

Электрофизические и электрохимические методы обработки металлов и сплавов (Исаченко

Электрофизические и электрохимические методы размерной обработки материалов

Электрофизические и электрохимические способы обработки металлов

Электрофизические и электрохимические способы обработки металлов и сплавов

Электрофизические, электрохимические и другие методы обработки материалов и их применение в производстве коммутационной аппаратуры

Электрохимическая обработка

Электрохимические и электрофизические способы восстановления и обработки деталей

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте