Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия материалов в аммиаке

КОРРОЗИЯ МАТЕРИАЛОВ В АММИАКЕ  [c.279]

Коррозия материалов в аммиаке  [c.281]

Коррозионная стойкость меди сильно зависит от присутствия в атмосфере примесей и влажности. При относительной влажности выше 63 % скорость коррозии меди значительно возрастает. Заметно увеличивается скорость разрушения меди в присутствии сероводорода. Медь быстро тускнеет, причем скорость реакции не зависит от присутствия влаги [5.7]. Влияние других загрязнений атмосферы на скорость разрушения меди и бронз, видимо, сильно зависит от концентрации. Коррозионные испытания, проведенные в 30-х годах, когда уровень загрязнений атмосферы был относительно невысок, показали примерно одинаковую коррозионную стойкость в различных атмосферах у всех материалов па основе меди, за исключением латуней, которые подвергались обесцинкованию. В более поздних исследованиях было найдено значительное влияние состава атмосферы на коррозию меди. В сельской местности скорость ее разрушения минимальна (3—7) 10 мм/год, в морской атмосфере (4-f-20) 10" и в городской (промышленной) (9-Н38) 10". Латуни по-прежнему подвергаются обесцинкованию и за 20 лет они теряли 52—100 % прочности, а другие материалы за этот срок теряли не более 23 % прочности. Легирование а-латуней мышьяком непременно приводило к предупреждению обесцинкования, уменьшению коррозионного разрушения и к большему сохранению прочности. Коррозионному растрескиванию латуни чаще подвергаются в сельской местности, так как здесь наиболее вероятно появление в атмосфере аммиака или его солей за счет гниения органических остатков (листва, солома и т. п.). В городских условиях наиболее вредными загрязнениями для меди и медных сплавов являются продукты сгорания топлива (угля, нефти) и выхлопные газы двигателей внутреннего сгорания (автомобили, тепловозы и т. д.).  [c.221]


Коррозия строительных материалов в воде обусловлена химическими свойствами последней. К агрессивным компонентам, содержащимся в воде, относятся азотная кислота, аммиак, кислород, двуокись углерода, соединения хлора, серная и сернистая кислоты, органические соединения, бактерии и т. д. Вследствие активных свойств болотной, воды может иметь место ряд химических реакций (окисление, гидратация, восстановление, карбонизация и другие). Некоторые природные воды имеют кислую реакцию (pH = 5). Исходя из коррозионной активности таких вод,  [c.243]

Одиако многолетний опыт показывает, что эти меры (как порознь, так и в комбинациях друг с другом) далеко не всегда улучшают условия эксплуатации, удлиняют сроки службы и межремонтных пробегов оборудования, а также снижают объем и стоимость ремонтно-восстановительных работ. Даже наилучшие из разработанных процессов обессоливания не обеспечивают полного удаления хлоридов из сырой нефти. Избежать целиком действия остаточных хлоридов не удается при существующей практике введения щелочных реагентов в сырье из-за отсутствия должных средств контроля и автоматизации подачи этого раствора. Хотя добавление аммиака в конденсатор или на верх атмосферной колонны и уменьшает в некоторой степени коррозию оборудования, однако это приводит к отложениям хлопьев твердого хлорида аммония, который в безводной форме неустойчив и разлагается при нагревании с выделением агрессивного хлористого водорода. Кроме того, гидрат окиси аммония при определенных условиях (если pH дренажной воды более 8,0) может вызвать коррозионное растрескивание латуни. Наконец, подбор коррозионностойких материалов в условиях совместного действия на металл слабых  [c.107]

Скорость коррозии металлических и неметаллических материалов в водных растворах аммиака  [c.247]

Последний раздел — Хладагенты — содержит сведения о коррозионном действии охлаждающих рассолов, а также аммиака и фреонов. Эти сведения ограничены данными, имеющими прямое отношение к эксплуатации рассольных охлаждающих систем и холодильных машин. Коррозия многих материалов в растворам хлористых солей, в аммиаке и фреонах при повышенных температурах подробно рассматривается в первом и втором томах этой серии, а также в подготавливаемом томе, посвященном азотной промышленности.  [c.6]

К настоящему времени накоплено большое количество данных о свойствах аммиака и конструкциях холодильной аппаратуры [1—3, 12—18]. Однако сведения о коррозии конструкционных и прокладочно-уплотнительных материалов в условиях работы аммиачных холодильных установок в литературе довольно малочисленны.  [c.279]


Скорость коррозии металлических материалов в жидком и газообразном аммиаке  [c.281]

Скорость коррозии металлических материалов в водных растворах аммиака  [c.302]

Коррозия металлических материалов в водороде и аммиаке достаточно полно освещена в литературе [8—15 и гл. 2 настоящего справочника].  [c.256]

Кроме указанных марок нержавеющих сталей, известны стали самого различного состава, которые находят применение в качестве конструкционных материалов в химическом машиностроении. Выбор той или иной марки стали обусловливается специфическими условиями агрессивной среды, а иногда физико-механическими свойствами стали. Так, например, в условиях синтеза мочевины (аппаратура подвергается сильной коррозии вследствие воздействия аммиака и углекислого газа при высоких температуре и давлении) лучшими свойствами обладает сталь, содержащая 13—15% №. 13—15% Сг и 2,25% Ш.  [c.125]

Следы кислорода, даже если они не наносят вреда непосредственно материалу котла, вызывают коррозию конденсатного тракта, особенно при наличии в конденсате диоксида углерода и аммиака. В результате в котел попадает небольшое количество солей меди, и вслед за этим металлическая медь осаждается на поверхности котла. Хотя коррозия не наносит серьезных повреждений конденсаторам, возникает вопрос, не появится ли в котлах питтинг из-за присутствия меди в котловой воде. По мнению ряда исследователей, осаждение меди не представляет опасности и является следствием гальванического эффекта, при котором ионы Си " " восстанавливаются на катодных участках вместо ионов Н+. В подтверждение этого предположения указывают на отсутствие коррозионных повреждений во многих котлах, на поверхности которых имеются отложения меди.  [c.289]

За последние 20 лет в химической промышленности широко развивалось использование глубокого холода за счет применения хладонов и хладоносителей. Защита от коррозии оборудования, работающего в этих средах, также рассмотрена в этой книге. Материалы по коррозии в среде аммиака, используемого традиционно в холодильных установках для получения умеренного холода, будут включены в книгу продолжающегося издания, посвященную коррозионным проблемам в азотной промышленности.  [c.4]

Существуют несколько источников загрязнений теплоносителя в пароводяных трактах ТЭС и АЭС примеси добавочной воды, вводимой в цикл для покрытия внутренних и внешних потерь пара и конденсата присосы в конденсат пара охлаждающей воды в конденсаторах или сетевой воды в теплообменниках примеси загрязненного конденсата, возвращаемого от внешних потребителей пара на ТЭЦ примеси, искусственно вводимые в пароводяной тракт для коррекции водного режима (фосфаты, гидразин, аммиак и другие разнообразные добавки) продукты коррозии конструкционных материалов, переходящие в теплоноситель. На АЭС примеси, кроме того, могут поступать в тракт в виде продуктов деления ядерного топлива через негерметичные участки тепловыделяющих элементов и образовываться в активной зоне реактора за счет процессов радиолиза воды, а также протекания радиационных превращений и радиационно-химических реакций. В зависимости от типа основного теплоэнергетического оборудования и условий работы вклад и влияние каждого из перечисленных источников (табл. В.1) в суммарное загрязнение водного теплоносителя ТЭС и АЭС могут значительно варьироваться.  [c.9]

Из-за скопления примесей в участках второго контура с плохой циркуляцией может образоваться щелочная среда. В щелочных растворах с высокой температурой резко возрастает опасность межкристаллитного коррозионного растрескивания под напряжением. Присутствующие в воде примеси и растворенные газы (водород, кислород или аммиак) способствует коррозии. На рис. 26.12 представлены данные, характеризующие чувствительность основных материалов трубопроводов к коррозионному растрескиванию (КР) под напряжением в зависимости от концентрации щелочи. Из трех рассмотренных материалов наибольшей стойкостью к коррозионному растрескиванию обладает сплав инконель 800. Высокую надежность имеют титановые трубопроводы, особенно в агрессивных средах. Широкое внедрение трубопроводов из этого материала сдерживается высокой стоимостью как самого титана, так и изготовления из него изделий.  [c.858]


Надежность оборудования и коммуникаций химико-технологических систем, работающих с использованием природных вод, во многом определяется коррозионной стойкостью материалов. Ниже приведены данные [108], характеризующие вклад (в %) отдельных аппаратов и узлов крупнотоннажных агрегатов производства аммиака в общую продолжительность простоя оборудования вследствие коррозии.  [c.186]

Процессы, осуществляемые под высоким давлением, имеют свою специфику, состоящую в том, что в них, как правило, используются технологические среды, содержащие такие компоненты, как высокотемпературный газообразный водород под давлением, газообразный аммиак, оксид углерода. Эти компоненты технологических сред представляют наибольшую опасность для сталей, используемых в сосудах и трубопроводах высокого давления, вызывая их азотирование, водородную и карбонильную коррозию. Именно эти виды коррозионного воздействия наиболее неблагоприятно влияют на работоспособность и надежность материалов при температурах выше 200... 300 °С.  [c.817]

В почве медь и ее сплавы корродируют в несколько раз медленнее, чем железо и сталь. Скорость коррозии этих материалов увеличивается в почвах с большим содержанием органических соединений, хлоридов, аммиака и соединений серы.  [c.105]

Из табл. 12.1 —12.3 следует, что все алюминиевые сплавы, за исключением алюминия высокой чистоты, подвергаются точечной коррозии в жидком и газообразном аммиаке при 16—20 и 50° С, а при —30° С корродируют все без исключения. Поэтому алюминиевые сплавы не могут быть рекомендованы в качестве конструкционных материалов для компрессионных холодильных установок.  [c.280]

Хорошая стойкость алюминиевых материалов все же не исключает начальной реакции между газом и металлом. В ходе этой реакции образуются продукты коррозии, осаждающиеся на поверхности металла и создающие защиту. Такое действие наблюдается также в случае сжиженных газов с высокой диэлектрической постоянной (аммиак, сернистый газ, синильная кислота).  [c.530]

Содержание железа в питательной воде зависит от интенсивности протекания коррозии конструкционных материалов конденсатно-питательного тракта. Пути подавления коррозии те же, что и для энергоблоков ТЭС поддержание значения pH на уровне 9 0,1 дозированием аммиака в питательную воду, устранение присосов воздуха в вакуумную часть конденсатного тракта, снижение концентра-  [c.262]

Известно, что наличие мели и цинка в питательной воде котлов связано с процессами коррозии медьсодержащих сплавов конструкционных материалов трубной системы ПНД и конденсаторов турбин. Растворение меди может проходить лишь в присутствии окислителей (кислорода), оно облегчается в условиях аммиачной обработки питательной воды. Аммиачная обработка имеет решающую роль и в образовании отложений меди в тракте котлов. При наличии в питательной воде ионов меди аммиак способен давать с ними комплексные соединения вида [Си (NHз)x] +, где Х—1ч-4. Значения отрицательных логарифмов констант нестойкости при разном значении X приведены ниже [5.5]  [c.215]

Рассмотрены окисоттельно-восстанови-тельные процессы, протекающие с участием перекиси водорода на некоторых электродах, и установлена связь меноду пассивным состоянием металла и его каталитической активностью. Кроме того, сборник содержит материалы по коррозии металлов в аммиаке, фтористом водороде, фторидах и других средах, а также исследования по коррозии и защите металлической аппаратуры для ряда промышленных синтезов.  [c.2]

Для повышения ингибиторного эффекта морфолина на конструкционные материалы блока с целью снижения загрязнения среды продуктами коррозии значение pH питательной воды и конденсата должно быть повышено до 8,8—9,0, что соответствует увеличению концентрации морфолина до 3—4 мг/л С4Н9НО. Морфолин обладает наиболее благоприятным среди аминов коэффициентом распределения К между жидкостью и паром (табл. 3-3). Так, при давлении 0,59—0,68 МПа /С=0,5 для аммиака, /С=0,6 для пиперидина, Л =0,9 для морфолина. Морфолин и пиперидин рбладают высокой термостойкостью. Так, в паре прямоточного котла при 550—565°С разлагается 20% морфолина и 50—65% пиперидина. Морфолин поглощается на катионитовом материале аналогично аммиаку и пиперидину, что позволяет проводить регенерацию катионита обычным способом.  [c.62]

В табл, 9.15 приведены экспериментальные данные о стойкости некоторых конструкционных и защитных материалов в нагретом аммиачном растворе уксуснокислой меди типичного состава, применяемого для извлечения бутадиена-1,3 в моль л)-, закиси меди 3,3, уксусной кислоты 6,0, аммиака 11. В правильно приготовле -ном и свежем растворе полированные образцы из Ст.З значительной коррозии не подвергаются, однако в реальных условиях эксплуатации углеродистая сталь не является надежным материалом. Возможно, что в будущем удастся подобрать какие-либо стойкие  [c.190]

Изучалась коррозионная стойкость углеродистой стали, чугуна, нержавещщ стал , титана в концентрированных растворах л/Нч й Иа (I, насыщенных аммиаком и углекислотой. Оборудование из стали и чугуна рекомендуется защищать эпоксидными композициями и гуммированием или вводить в качестве ингибитора сульфид натрия. Для подавления точечной коррозии нержавеющих сталей pH технологических сред должно быть выше 8,5 в охлаждающие рассолы ( Уа С и Со, С1 ) следует добавлять Си или л/с. СИ. Наиболее стойким материалом в зтих средах явля-  [c.182]

Вынос окислов железа из оборудования водоподготовительных и обессоливающих установок уменьшают применением защитных покрытий (гуммирования, бакелирова-ния, покрытия перхлорвиниловым или другим кислотостойким лаком) соответствующего оборудования и баков, а также изготовлением дренажных устройств фильтров и арматуры из устойчивых по отношению к коррозии материалов. Питательную воду обрабатывают аммиаком или морфолином для нейтрализации свободной углекислоты, содержащейся в паре, и повышения pH воды до необходимых значений (рН 9,0). Первостепенное значение для устранения выноса продуктов коррозии с производственным конденсатом приобретает обработка отборного пара турбин, направляемого на производство, с помощью пленкообразующих аминов. Этот метод противокоррозионной защиты рассмотрен в гл. 6.  [c.172]


Медь. В теплообменных системах охлаждающих башен часто применяют медь и адмиралтейскую латунь последняя после стали считается наиболее предпочитаемым конструктивным материалом. Ее преимуществом перед сталью является более высокая коррозионная стойкость, а недостатком — высокая стоимость. При некоторых условиях, в частности при предельных значениях pH, адмиралтейская латуиь тоже подвергается агрессивному воздействию. Очень вредны как низкие (<5), так и высокие (>9) значения pH низкие могут устанавливаться при плохом контроле добавок кислоты в систему или в результате присутствия в атмосфере кислотных газов, а высокие — вследствие поглощения аммиака из воздуха. Последнее особенно нежелательно, поскольку медь легко образует комплексы с аммиаком и переходит в раствор. Возникновение осадков, подобное уже ранее отмеченному нами при рассмотрении коррозии железа, и в этом случае вызывает разрущение адмиралтейской латуни. Введение в систему адмиралтейской латуни увеличивает вероятность появления гальванической коррозии. Поскольку изготовление всей системы из латуни крайне редко, в местах соединения этого материала со сталью возникает значительная разность потенциалов, которая может привести к сильной коррозии стали в месте контакта.  [c.90]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Коррозионное растрескивание под напряжением медных материалов вызывается растягивающими напряжениями - обычно остаточными напряжени51ми после холодной обработки - в сочетании с действием коррозионной среды, которая содержит аммиак и влагу, ртуть или родственные им вещества. Примерами таких сред являются паяльные флюсы, содержащие аммоний моча, атмосфера животноводческих помещений и даже открытые атмосферы (рис. 120). Поскольку опасность растрескивания наиболее велика в сезоны высокой влажности, явление иногда называют сезонным растрескиванием . Способностью вызывать коррозию медных сплавов под напряжением обладают и другие вещества, например нитриты. Трещины могут быть транскристаллитными или межкристаллитными в зависимости от pH среды и от величины напряжения.  [c.137]

Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д.  [c.4]

Особенности химического состава перерабатываемых нефтей и технологии переработки вызывают электрохимическую хлористоводородно-сероводородную коррозию низкотемпературной части оборудования. Для защиты от нее наряду с рациональным подбором конструкционных материалов применяют технологические методы ингибирования, нейтрализации введением аммиака, защелачивания нефтяного сырья. Последнее может осложняться возникновением щелочной хрупкости стального оборудования. Сульфиды и хлориды могут вызывать коррозионное растрескивание элементов оборудования из нержавеющих сталей аустенитного класса. При переработке нефтей ряда месторождений оборудование разрушается коррозией под действием нефтяных кислот. Высокотемпературное оборудование установок первичной переработки нефти (в котором не содержится капельно-жидкая вода) разрушается в результате высокотемпературной (газовой) сероводородной коррозии. Все эти формы коррозии и пути защиты от них освещены в данной главе.  [c.65]

На предприятиях азотной промышленности, в воздухе которых содержатся кислые пары и газы, скорость коррозии углеродистой стали составляет от 0,16 до 0,8 мм год. Между тем, большое количество металлоконструкции, трубопроводов, крупногабаритных аппаратов изготовляется из углеродистой стали. Отсюда возникает необходимость в обязательной зашите углеродистой стали. Наиболее доступный и распространенный способ защиты от атмосферной коррозии — лакокрасочные покрытия [3, 4]. Присутствие в атмосфере заводов окислов азота, паров азотной кислоты, аммиака и других агрессивных примесей сильно ограничивает ассортимент лакокрасочных материалов, пригодных для защиты углеродистой стали. Перечень лакокрасочных материалов, применяемых в азотной промышленности, приведен в табл. 9.1.  [c.265]

Метод анодной защиты используют для металлов и сплавов, легко пассивирующихся при анодной поляризации. В химической промышленности его успешно применяют для снижения скорости коррозии низкоуглеродистой стали в серной кислоте и в растворах, содержащих аммиак и нитрат аммония, а также для защиты конструкционных материалов, например углеродистой и нержавеющей сталей, способных пассивироваться во многих средах.  [c.191]

Магний—очень электроотрицательный металл (V °=—2,37в) и потому из конструкционных материалов наиболее коррозионно активен. Склонность к пассивированию позволяет ему быть стойким в растворах хромовой кислоты. Однако он не стоек в других кислотах, за исключением плавиковой, в которой на поверхности металла образуется нерастворимая в этих условиях защитная пленка, состоящая из Mgp2. Магний стоек в растворах аммиака и щелочей (до 50—60°С). Фосфаты образуют защитную пленку на магнии и его сплавах, повышая стойкость от разрушения в воде и водных растворах солей. Магний не стоек в органйческих кислотах, в нейтральных солевых растворах и даже в воде, особенно, если она содержит углекислоту. Хлорсодержащие флюсы при попадании в сплав сильно повышают скорость коррозии отливки. Контакт с электроположительными металлами, а также загрязнение магния железом, никелем, медью и другими металлами с низким перенапряжением водорода повышают скорость коррозии. Цинк, свинец, кадмий, марганец и алюминий менее опасны в этом отношении. В атмосферных условиях в отличие от растворов электролитов магний корродирует с кислородной деполяризацией. Легко окисляется на воздухе при повышенных температурах.  [c.57]



Смотреть страницы где упоминается термин Коррозия материалов в аммиаке : [c.60]    [c.228]    [c.557]    [c.181]    [c.44]    [c.249]    [c.142]   
Смотреть главы в:

Коррозия и защита химической аппаратуры Том 3  -> Коррозия материалов в аммиаке



ПОИСК



Аммиак



© 2025 Mash-xxl.info Реклама на сайте