Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженное состояние балки при чистом изгибе

Напряженное состояние балки при чистом изгибе. Рассмотрим элемент балки, подверженной чистому изгибу, заключенный между сечениями т — т и п — п, которые отстоят одно от другого на бесконечно малом расстоя- 1 и,  [c.165]

Для расшифровки картин полос нужно знать оптическую постоянную материала, которую определяют на тарировочных образцах. В качестве тарировочного можно взять любой образец, если в какой-либо его точке из расчета или другого эксперимента известны напряжения. На практике, однако, используются такие образцы, которые легко изготовить и нагрузить, которые в исходном состоянии не содержат остаточных напряжений и напряжения в которых можно определить по простым формулам. В качестве тарировочных образцов обычно используют растягиваемые стержни, балки при чистом изгибе и круглые диски, сжатые вдоль диаметра. Формулы для определения напряжений в растягиваемых стержнях ив балках хорошо известны. В диске,, сжатом вдоль вертикального диаметра (фиг. 3.11), напряжения  [c.79]


Напряжённое состояние в рассматриваемой точке называется линейным (одноосным), если два главных напряжения равны нулю, например, в точках равномерно растягиваемой полосы и в волокнах балки при чистом изгибе J Ф О, 3у = 0г= = 0).  [c.7]

В смысле сопротивления материалов эта средняя часть балки подвергается чистому изгибу. В смысле же теории упругости средняя часть балки не находится в состоянии чистого изгиба — здесь при строгом решении проблемы обнаруживаются само-уравновешенные в пределах поперечного сечения, в том числе касательные, напряжения.  [c.98]

Таким образом, сечение балки после деформации остается плоским и нормальным к оси балки, что и принималось нами как основное положение для исследования напряженного состояния балок при плоском чистом изгибе.  [c.172]

Расчет балок на изгиб с поперечной силой по предельному состоянию. Выше мы видели, что при чистом изгибе расчет по допускаемому напряжению не дает возможности использовать полностью способность балки сопротивляться действию внешних сил с гарантией, что не будет происходить быстрого возрастания прогибов. Эту возможность мы получили, выполнив расчет по предельному состоянию, которому соответствовала эпюра напряжений, представленная на рис. 99. При изгибе с поперечной силой такая эпюра напряжений оказывается недопустимой. Применяя, например, четвертую теорию прочности, мы установим, что в точках сечения балки, в которых имеет место пластическая деформация, должно соблюдаться условие пластичности  [c.190]

Как мы видели выше, при чистом изгибе расчет балок по разрушающим нагрузкам позволяет увеличить их несущую способность в п раз. При этом мы пришли к выводу, что если п<к, то напряжения в самых крайних волокнах балки будут ниже предела текучести. Следовательно, в допускаемом состоянии эпюра нормальных напряжений будет иметь вид, представленный на рис. 7.45, а.  [c.197]

В задаче об изгибе балки ( 25) напряжение в предельном состоянии испытывает при переходе через нейтральную плоскость скачок от -1-0 к —о . Для задачи чисто пластического кручения также характерно наличие линий разрыва, вдоль которых касатель-  [c.159]

При назначении надлежащих размеров поперечных сечений в стальных конструкциях иногда бывает необходимо учитывать не только те нагрузки, при которых материал начинает обнаруживать текучесть, но и такие, под действием которых сооружение окончательно теряет несущую способность, совершенно разрушаясь. Анализ свидетельствует, что если два сооружения спроектированы с одним и тем же коэффициентом запаса относительно предела текучести, то они могут характеризоваться весьма различными коэффициентами запаса в отношении полного разрушения. Рассмотрим, например, чистый изгиб балки и положим, что материал ее—сталь—следует закону Гука до предела текучести, с превышением же этого предела—удлиняется без упрочнения при этих условиях распределения напряжений, показанные на рис. 200, а и 200, б, будут отражать два предельных состояния 1) начало текучести и 2) полное разрушение. Соответствующие изгибающие моменты для прямоугольного поперечного сечения (рис. 200, в) определяются из следующих формул  [c.508]


Рассмотрим теперь чистый изгиб балки из упруго-идеально-пластического материала (рис. 9.1). Когда приложенный изгибающий момент мал, максимальное напряжение не превышает предела текуче-сти (Тт и балка находится в состоянии обычного упругого изгиба с линейным законом распределения напряжений, как показано на рис. 9.3, а. При таких условиях из уравнений (9.1)—(9.4) следует,  [c.348]

Произведенный анализ- напряженного состояния изогнутой балки прямоугольного сечения показывает, что различные ее точки испытывают напряженные состояния разных видов. Нейтральный слой работает на чистый сдвиг, наиболее удаленные от него слои — на простое растяжение или сжатие, а в промежуточных слоях наблюдаются всевозможные переходные состояния от растяжения (сжатия) к чистому сдвигу, которые можно изобразить целой серией кругов Мора (рис. 180). Полюсы этих кругов непрерывно перемещаются от левого края круга (растянутая кромка) через центр (нейтральный слой) до правого края (сжатая кромка). Таким образом, при изгибе (в отличие от растяжения или кручения) материал испытывает не одно напряженное состояние, а совокупность различных напряженных состояний.  [c.174]

Расчет балок на чистый изгиб по предельному состоянию. Поставив требование, чтобы наибольшие напряжения не превосходили допускаемых, мы обеспечиваем гарантию того, что эти напряжения не достигнут для балок из хрупких материалов временного сопротивления, а для балок из пластичных материалов — предела текучести. Иными словами, при таком расчете за предельное состояние балок из хрупкого материала принимается состояние по рис. 97, а, а для балок из пластичного материала — по рис. 97, б (при одинаковом Ст для растяжения и сжатия). Представленное на рис. 97, а состояние балки из хрупкого материала можно действительно считать предельным, так как при нем начинается разрушение балки. Что касается состояния, представленного на рис. 97, б, то рассматривать его как предельное можно лишь условно, в том смысле, что в этом состоянии в балке начинают развиваться пластические дефор.мации. Однако это обстоятельство не может ни повлечь за собой значительного увеличения прогибов, ни отразиться на грузоподъемности балки, так как в этом состоянии пластически деформируются лишь крайние волокна балки, все же остальные испытывают упругие деформации. При дальнейшем увеличении изгибающих моментов крайние волокна, правда, деформируются без существенного увеличения напряжений, зато в остальных напряжения могут увеличиваться по крайней мере до От- В результате начинают пластически деформироваться волокна, ближайшие к крайним, затем ближайшие к названным и т. д. Таким образом, пренебрегая возможностью незначительного роста напряжений после достижения величины От, можно представить последовательное изменение напряженного состояния эпюрами, изображенными на рис. 98 пунктиром. Иными словами, пластическая деформация, начавшись у поверхности балки, при дальнейшем росте изгибающих моментов постепенно распространяется вглубь.  [c.174]

Косой изгиб в пластической области. Как показано, де-формации балки при косом чистом изгибе связаны с поворотом плоских сечений относительно нейтральной оси, не перпендикулярной к плоскости действия изгибающих моментов. Вследствие этого процесс пластической деформации при косом изгибе имеет характер, соверщенно аналогичный характеру при плоском изгибе, и сводится к постепенному распространению пластической деформации от крайних, наиболее напряженных в упругой области волокон, на волокна, находящиеся на меньшем расстоянии от нейтрального слоя. В частности, при пластической деформации без упрочнения напряжения становятся равными соответствующему пределу текучести в точках все увеличивающихся частей растянутой и сжатой зон сечения, причем, однако, постепенно изменяется направление нейтральной оси сечения. За предельное состояние балки, аналогично случаю плоского изгиба, можно принять такое, при котором сечение балки оказывается разделенным на две зоны, в точках одной из которых напряжения равны пределу текучести при растяжении, в точках другой — пределу текучести при сжатии. Поэтому, в случае равенства последних, имеем на основании (7.1)  [c.244]


Таким образом, напряженное состояние при поперечном изгибе (при наличии перерезывающей силы) изменяется от одноосного растяжения и сжатия (в верхних и нижних волокнах) до чистого сдвига, т. е. двухосного, разноименного напряженного состояния (в центре балки). При переходе от периферии к центру балки направления главных напряжений изменяются в крайних волокнах главные напряжения параллельны оси балки, а в центральных — направлены под углом 45° к оси балки. Это часто отражается на виде излома хрупких материалов. Все сказанное  [c.96]

В (9.2) имеем соотношение закона плоских сечений при изгибе. Перейдем к выражению для нормального напряжения. Опытные наблюдения подтверждают, что при изгибе продольные волокна балки не оказывают друг на друга давления и, следовательно, каждое продольное волокно находится в условиях чистого растяжения или сжатия (одномерное напряженное состояние). Поэтому, применяя закон Гука для одноосного растяжения и сжатия, получаем  [c.168]

Для вывода формулы, определяющей нормальные напряжения, возникающие в поперечном сечении балки, рассмотрим балку, изображенную на рис. 7.24, а. Определив опорные реакции (в силу симметрии Ra — Rb = F) и построив эпюры поперечных сил и изгибающих моментов (рис. 124,6,в), заключаем, что средняя часть балки (участок D) находится в условиях чистого изгиба поперечная сила во всех сечениях этого участка равна нулю. Двумя бесконечно близкими поперечными сечениями выделим из этого участка элемент длиной dz. Отдельно (в крупном масштабе) этот элемент в деформированном состоянии изображен на рис. 125. Длина волокон, лежащих в нейтральном слое, при изгибе не изменяется. Обозначим след нейтрального слоя на плоскости чертежа п — и, а его радиус кривизны - р (рис. 7.25). Определим линейную деформацию произвольного волокна, отстоящего на расстоянии у от нейтрального слоя. Длина этого волокна после деформации (длина дуги т-т) равна (р + y)d0. Учитывая, что до деформации все волокна имели одинаковую длину dz, получаем, что абсолютное удлинение рассматриваемого волокна  [c.177]

Сен-Венан нашел способ определения положения нейтральной оси сечения при косом изгибе решил задачу определения больших прогибов консоли (в случае неприменимости приближенного дифференциального уравнения изогнутой оси) решил задачу изгиба балки, материал которой не следует закону Гука исследовал изгиб кривых стержней плоских и двоякой кривизны вывел формулу для определения продольной деформации винтовых пружин провел дальнейшую разработку теории кручения призматических стержней развил вторую теорию прочности дал расчетную формулу для валов, работающих в условиях совместного действия кручения и изгиба показал, что в частном случае плоского напряженного состояния при аг = —вызывается чистый  [c.562]

Наиболее распространенный тип испытания на выносливость при одноосном напряженном состоянии — испытание на изгиб при симметричном цикле изменения напряжений. Образец А в этом случае работает как консольная балка (фиг. 370) или как двухопорная балка (фиг. 371 и 372), симметрично нагруженная двумя силами. В первом случае образец подвергается поперечному, а во втором случае — чистому изгибу.  [c.593]

У верхней грани бетон находится в условиях сложного напряженного состояния, так как кроме нормальных сжимающих напряжений от изгиба здесь действуют еще и касательные напряжения от кручения. Исследования железобетонных элементов при изгибе с кручением и чистом кручении [22], [78] показали, что в предельном состоянии напряженное состояние сжатой части сечения довольно однородно вследствие пластических деформаций бетона и перераспределения напряжений. Поэтому сжатая зона бетона располагается в вертикальной плоскости, наклоненной под некоторым углом к продольной оси балки. Величина этого угла зависит от многих факторов отношения крутящего и изгибающего моментов г]) = = MJM , формы и размеров поперечного сечения, величины и характера предварительного напряжения продольной арматуры,  [c.204]

Так как з балке при чистом изгибе возникает линейное напряженное состояние (а. 1), то согласно выражению (1.2С) интенсивность напряжении а, = ( J, . Если считать, что матеоиал несжимаем (см. 5 4, гл. XI), то согласно выражению ( 2А7) интенсивность деформаций ползучести = I Тсгдз из. юрмулы (а) получаем следующую зависимость деформаций ползучести от напряжений  [c.257]

Малый параметр может быть введен в теории пластичности различным образом. А. А. Ильюшин [58] использовал в качестве малого параметра величину, обратную модулю объемного сжатия, и исследовал нормальные и касательные напряжения при чистом изгибе балки за пределом упругости. Отметим, что вопросы, связанные с линеаризацией по коэффициенту Пуассона, рассмотрены ниже в Добавлении. Методом малого параметра, характеризующего геометрию тел, Л. М. Качанов [63, 64] рассмотрел кручение круглых стержней переменного диаметра и ползучесть овальных и разностенных труб. В работе [30] малый параметр характеризует различие между плоским деформированным и осесимметричным состояниями. Б. А. Друянов [13, 14] при помощи метода малого параметра учел неоднородность пластического материала. Здесь малый параметр характеризовал возмущение условия пластичности. Свойства пластического материала характеризует малый параметр в работах Л. А. Толоконникова и его сотрудников [76—78], а также в [83].  [c.9]


Учитывая, что в правой части уравнения 11.1.2 все величины постоянные, отношение 1/р==к также величина постоянная, т. е. кривизна изогнутой части балки, находящейся в состоянии чистого изгиба, является onst. Возвращаясь к уравнению 11.1.1, нормальное напряжение при поперечном изгибе можно представить в виде  [c.173]

Плоский чистый изгиб балки с точки зрения общей теории объемного яапряженного состояния. Нетрудно показать, что полученные нами выражения для напряжений при плоском чистом изгибе при упругих деформациях яв--ляются точным решением уравнений общей теории объемного напряженного состояния, изложенной в пп. 6 и 7 11, и что гипотеза плоских сечений согласуется с этим решением. В самом деле, указанные выражения в обозначениях ш. 6 11 можно представить так  [c.169]


Смотреть страницы где упоминается термин Напряженное состояние балки при чистом изгибе : [c.85]    [c.175]    [c.65]    [c.343]    [c.166]   
Смотреть главы в:

Краткий курс сопротивления материалов Издание 2  -> Напряженное состояние балки при чистом изгибе



ПОИСК



Балки Состояние напряженное при

ИЗГИБ Расчет прочности балок V 18. Деформация изгиба. Напряженное состояние при изгибе Поперечный изгиб. Чистый изгиб

Изгиб балки чистый

Изгиб балок

Изгиб чистый

Напряженное состояние в при изгибе

Напряженное состояние при чистом изгибе

Плоский чистый изгиб балки с точки зрения общей теории объемного напряженного состояния

Раздел третий ИЗГИБ Расчет прочности балок Деформация изгиба. Напряженное состояние при чистом изгибе

Состояние чистое



© 2025 Mash-xxl.info Реклама на сайте