Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодное растворение металлов при больших анодных поляризациях

Анодное растворение металлов при больших анодных поляризациях  [c.130]

О скорости течения на электроде той или иной электрохимической реакции лучше всего судить по изменению потенциала электрода при пропускании через него тока. Реакции, идущие с большой скоростью, не приводят к сколько-нибудь заметным изменениям потенциала электрода при пропускании через него тока. Реакции, протекающие со значительным торможением какой-либо из стадий суммарного процесса, сопровождаются значительным изменением потенциала электрода. В первом случае реакция не сопровождается заметной поляризацией электрода, во втором — электрод подвергается сильной поляризации. Так, например, незначительное изменение потенциала электрода при анодном растворении металла показывает, что реакция ионизации (1.1) идет без заметного торможения. При этом электрод практически не поляризуется. Значительная поляризация электрода, наблюдающаяся, например, при протекании на нем реакции восстановления ионов водорода или молекул кислорода  [c.9]


Аномальное поведение металлического электрода по сравнению с тем, которое можно было бы ожидать исходя из уравнения (1.17), обусловлено прямым или косвенным влиянием концентрационной поляризации или изменением химических свойств поверхности, затрудняющим переход катионов в раствор на границе металл — электролит. Резкое изменение скорости анодного растворения после достижения определенного потенциала обычно связывают с накоплением на поверхности электрода адсорбированного кислорода или химически связанных с металлом кислородных соединений. По мере смещения потенциала в сторону положительных значений степень покрытия кислородом все больше возрастает. При достижении определенного потенциала ф электрод оказывается почти полностью покрытым оксидным слоем. Миграция катионов из металлической решетки в раствор через такой оксидный слой затрудняется,  [c.14]

Большое влияние на работу конструкции оказывают внешние токи. При катодной поляризации в большинстве случаев может быть обеспечена защита от коррозии. При анодной поляризации для систем металл — раствор, не склонных к пассивации, происходит усиленное растворение металла. Необходимо принимать специальные меры по защите от коррозии конструкций и сооружений от блуждающих токов. Специфическое влияние на коррозионные процессы оказывают ультразвук и радиоактивное излучение.  [c.24]

Имеется еще и другая возможность уменьшения скорости растворения металла — это непосредственное уменьшение скорости анодной реакции ионизации металла без вмешательства ингибитора в катодный процесс. Очевидно, что если каким-нибудь химическим средством затруднить течение этой реакции, то кривая фа (см. рис. 1,1) за счет увеличения поляризации все больше будет наклоняться к оси ординат и скорость процесса при заданном потенциале достигнет ничтожно малых величин. В ряде случаев таким образом может быть достигнут и потенциал полной пассивации.  [c.31]

Учитывая рассмотренные выше закономерности, можно полагать. что при внутренней анодной поляризации стали ингибиторами с общим анионом типа М0 природа пассивирующих слоев остается такой же, как и при внешней анодной поляризации. Специфическое действие ингибиторов проявляется в том, что, адсорбируясь на поверхности металла, они понижают общую свободную энергию системы и повышают стабильность пассивных пленок. В зависимости от природы адсорбированных частиц, их концентрации на поверхности и прочности связи меняется скорость растворения, поляризуемость и плотность тока, необходимая для пассивации, а также потенциал пассивации. В таких условиях пассивация может наступить и без большого внутреннего тока окислительно-восстановительной реакции ингибитора лишь за счет небольших плотностей тока реакции восстановления кислорода, растворенного в электролите.  [c.63]


Исходя из рассмотренных поляризационных кривых, ясно, что испытания нужно вести таким образом, чтобы потенциал металла все время находился в области активного растворения АБ) и по возможности был бы смещен в положительную сторону от стационарного, но не выходил при этом за пределы потенциала пассивации. Подобное состояние достигается, во-первых, введением в электролит окислителей в определенных концентрациях, а также увеличением концентрации кислорода. Сместить потенциал можно также путем анодной поляризации, которая, однако, не должна быть большой, а потенциал следует поддерживать на уровне, более отрицательном, чем уровень потенциала пассивации. При увеличении анодного тока растворения во избежание пассивации следует применять размешивание, которое будет способствовать отводу продуктов анодной реакции от поверхности испытуемых образцов.  [c.34]

Анализируя потенциостатическую анодную кривую, можно прийти к выводу о возможности с помощью внешнего катода перевести металл, находящийся в активном состоянии, в пассивное. В этом случае контакт с более благородным металлом как бы оказывается полезным (ср. на диаграмме влияния катода ki и ks). Хотя в принципе такая возможность и имеется, но на практике она редко реализуется. Дело в том, что при активном растворении металлов катодные процессы, как правило, протекают с гораздо большей поляризацией, нежели анодные. Поэтому катодные процессы обычно протекают не столь эффективно и потенциал катода подтягивается к потенциалу анода. Для того чтобы с помощью внешнего катода запассивировать металл, находящийся в активном состоянии, необходимо, чтобы катодный процесс на нем протекал с весьма большой скоростью например, для железа в нейтральном электролизе  [c.38]

На рис. 190 представлена зависимость количества возникающих на поверхности точечных анодов и их глубины от плотности анодного тока. Эта зависимость в логарифмических координатах описывается уравнением прямой с показателем степени п = , что указывает на наличие прямой пропорциональности между числом возникающих питтингов и плотностью тока. Средняя глубина питтингов при анодной поляризации возрастает с плотностью тока очень медленно, а начиная с определенной плотности тока (5-Ю а/см ) она падает (рис. 190, кривая 2). С увеличением плотности поляризующего тока на поверхности металла возникает все больше мелких питтингов (табл. 55). Это является результатом того, что металл в большинстве питтингов пассивируется и они со временем перестают функционировать. Проявляется двойственная роль анодной поляризации в одних центрах она способствует активному растворению металла, в других — пассивированию поверхности. В активном состоянии остается лишь небольшое число активных центров, в которых, очевидно, не был достигнут ток пассивации. В этих центрах скорость растворения металла возрастает непрерывно с плотностью тока вследствие того, что поляризующий ток распределяется на малое число активных центров (рис. 190, кривая 3).  [c.356]

Кроме указанных причин, торможение анодного процесса при большой поляризации может быть вызвано отложением твердых продуктов растворения металла (малорастворимых солей) хотя такие слои обычно бывают рыхлыми, они могут в известной мере тормозить анодный процесс и приводить к явлению предельного анодного тока [45]. Предельный анодный ток будет тем больше, чем вьппе растворимость продуктов коррозии.  [c.132]

Для ускорения процесса растворения металла в порах иногда применяется анодная поляризация испытуемого образца [11]. В некоторых случаях для выявления пор вместо анодной применяется катодная поляризация. Это используется в случае низкой электропроводности поверхностного слоя, в частности при анодировании, когда в результате большей проводимости основного металла осаждение металла происходит в порах [12]. Кроме того, возможно выявление пор при катодной поляризации по числу пузырьков водорода, выделяющихся в порах вследствие более низкого перенапряжения водорода на основном металле.  [c.354]


При погружении в воду в результате коррозии поверхность магниевого сплава темнеет, и на ней появляются продукты коррозии в виде белых островков. На рис. 34 приведены поляризационные кривые изучаемых систем в дистиллированной воде. При небольших значениях поляризующего тока (до 2 мкА/см ) потенциал сплава МА8 остается практически постоянным, что указывает на постоянную скорость саморастворения сплава. При большей плотности тока наблюдается как анодная, так и катодная поляризация. Анодная поляризация, по-видимому, обусловлена образованием на поверхности сплава плохо растворимых продуктов коррозии, которые препятствуют проникновению воды в металл и тормозят процесс его растворения.  [c.80]

Если сравнить стандартные электродные потенциалы Ti и таких технически важных металлов, как Fe, Сг, Ni, Мо,Та, Nb, Zr, то можно легко убедиться, что Ti в их ряду является одним из наиболее термодинамически неустойчивых. Однако его коррозионная стойкость значительно выше, чем у многих перечисленных металлов. Ti легче пассивируется, чем Fe, Ni, Сг. Мо, Та, Nb, Zr ещё более склонны к пассивации, чем Ti, вследствие происходящей в коррозионной среде самопассивации без применения внешней анодной поляризации. Тем не менее при положительных электродных потенциалах Мо, Сг и Ni имеют область перепассивации, в которой они растворяются в виде ионов более высокой валентности, в то время как у Ti подобная область перепассивации в кислых средах не наблюдается. Zr более стоек, чем Ti, в растворах НС1, H S04 и других кислот. Но при анодной поляризации в растворах НС1 Zr подвержен растворению с образованием питтингов. Таким образом, лишь Та и Nb превосходят Ti по коррозионной стойкости, что обусловлено их более лёгкой пассивируемостью и большей устойчивостью пассивного состояния.  [c.63]

Роль пассивирования, изменяющего состояние поверхности электрода, отражается также при ионизации металлов. Это видно из экспериментальных результатов, полученных А. Т. Ваграмяном и А. П. Попковым при изучении осаждения и растворения ряда металлов. Как видно из табл. 1, для тех металлов, выделение которых происходит с большим перенапряжением, анодная поляризация также выше, чем для более легко выделяющихся металлов.  [c.12]

Анодные кривые для титана и хрома одинаковы. На кривой можно отметить следующие характерные точки — стационарный потенциал, внешний ток равен нулю, V — потенциал начала пассивации соответствует максимальному току анодного растворения металла. При потенциалах более положительных, чем потенциЗоЧ начала пассивации, скорость анодного растворения металла уменьшается —потенциал полной пассивации, при котором устанавливается минимальный анодный ток. При потенциалах, более положительных, чем потенциал полной пассивации, металл находится в пассивном состоянии, поддерживаемом внешней анодной поляризацией. Различие в анодном поведении титана и хрома состоит в следующем при высоких положительных потенциалах пассивное состояние титана не нарушается, в то время как у хрома наступает состояние перепассивации [10—12], в котором он начинает растворяться в виде шестивалентных ионов. Анодный ток, соответствующий началу пассивации, для хрома значительно больший, чем для титана. Потенциал полной пассивации у хрома более отрицательный, чем у титана. Перенапряжение водорода на хроме несколько более низкое, чем на титане. Стационарный потенциал молибдена в 40%-ной H SO равен +0,3 в, т. е. значительно более положителен, чем потенциал полной пассивации титана в этой среде. Поэтому в области потенциалов, где титан активно анодно растворяется на молибдене, протекают катодные процессы. Анодное растворение молибдена наблюдается только при значительном смещении его потенциалов в положительную сторону. Сопоставлением весовых потерь и количества пропущенного электричества установлено как в наших опытах, так и в работе [13], что растворение молибдена происходит в виде шестивалентных ионов. Молибден является коррозионностойким металлом в серной кислоте. Поэтому растворение молибдена в виде ионов высшей валентности при анодной поляризации можно трактовать как состояние перепассивации. Перенапряжение водорода на молибдене значительно более низкое, чем на титане. Палладий в серной кислоте анодно не растворяется. Рост анодного тока при высоких положительных потенциалах соответствует реакции выделения кислорода. Перенапряжение водорода на палладии значительно ниже, чем на титане.  [c.179]

Как правило, растворение металлов в пассивной области (см. участок СО рис. 3) происходит при образовании катионов высшей валентности (например, Ре , Сг ). Поскольку при столь малой интенсивности растворения очень мала вероятность развития диффузионных ограничений процесса, гидродинамические условия не влияют на кинетику растворения металла в рассматриваемой пассивной области. Пассивационные явления на поверхности анодно-растворяющегося металла имеют большое значение для процесса и влияют на производительность ЭХО и качество поверхности. Пассивность, зависящую от многих факторов (состава металла, активности раствора и т. д.), можно рассматривать как состояние повышенной устойчивости металла, вызванное торможением анодного процесса в условиях, когда с точки зрения термодинамики он реакционно способен. Как правило, пассивность связана со значительным изменением потенциала металла в положительную сторону вследствие воздействия сильной окислительной среды или анодной поляризации [177].  [c.28]

Наибольшее влияние на качество электролитических покрытий оказывает поляризация электродов. Потенциал, при котором происходит выделение металла на катоде (катодный потенциал) или растворение металла на аноде (анодный потенциал), выше потенциала электрода в отсутствии электрического тока (потенциал равновесия). Разность между потенциалом выделения металла на катоде (или растворения металла на аноде) и потенциалом электрода (того же металла) в отсутствии электрического тока называется поляризацией (перенапряжением). Поляризация оказывает большое влияние на формирование покрытия и его качество. Поляризация вызывается рядом причин изменением концентрации ионов в прикатод-ном слое (концентрационная поляризация) и сопротивлениями, возникающими при протекании химических реакций в процессе электролиза (химическая поляризация).  [c.271]


Поведение железа в азотной кислоте. Резкий контраст между бурной реакцией железа в умеренно разбавленной кислоте и его инертностью в концентрированной кислоте получил удачное графическое объяснение в работе братьев Пражак [30]. При анодной поляризации металл становится пассивным в том случае, когда плотность поляризующего тока на нем больше плотности тока, соответствующей максимальной скорости, с которой металл может переходить в раствор в этих условиях неизбежно должна начаться другая реакция (например, образование окисла). Если продукт анодной реакции плохо растворим, препятствием анодному растворению металла может служить образующийся слой твердой соли в этом случае предельная плотность тока может быть значительно увеличена перемешиванием раствора. Однако в азотной кислоте протекание тока ограничивается, очевидно, не пленкой азотнокислой соли. Образование такой пленки может иметь место лишь в том случае, когда сила пропускаемого тока настолько велика, что не обеспечивается количеством атомов, обладающих энергией, достаточной для перехода в раствор. Предельная плотность тока при этом увеличивается с повышением температуры, но на нее мало влияет перемешивание. Если плотность тока превышает предельную, потенциал должен повыситься до значения, при котором может происходить другая реакция. На фиг. 166 анодная кривая 1 фактически построена по результатам измерений в опытах с железом в серной кислоте (проводить непосредственные измерения в азотной кислоте считали нецелесообразным в связи с возможными осложнениями из-за химического окисления ) если предельная плотность тока обусловлена  [c.753]

Эффект растет с ростом Як и уменьшается с ростом металла Полное подавление работы микро-нар достигается при V = (Ул1е)обр. что возможно при катодной поляризации металла как от внешнего источника постоянного тока, так и при помощи анодного протектора, при этом обычно (/к)онешн>/о Эффект имеет большое практическое значение и используется для уменьшения или полного прекра-ш,ения электрохимической коррозии защищаемой конструкции с переносом растворения на менее ценную конструкцию (протектор или дополнительный анод)  [c.296]

В работе [83], наоборот, совсем не учитывается кристаллизационное перенапряжение при оценке электродного потенциала деформированного медного электрода в водном растворе USO4. При этом утверждается, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. недеформированный металл). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопереноса сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [84], свидетельствующими о большом кристаллизационном перенапряжении (до 100 мВ). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кристаллическую решетку при катодном процессе, связанное с преодолением кристаллизационного перенапряжения, переводит атом в первоначальное состояние напряженного металла, и элементарный акт растворения — восстановления является обратным при соответствующем равновесном потенциале.  [c.92]

Применительно к конструкции, содержащей щели, в которых металл является анодом, это означает, что защита будет достигнута в том случае, когда потенциал всей конструкции достигнет такого значения, которое устанавливается в щели в отсутствии поляризации. Учитывая, что анодное растворение в щели протекает в условиях, когда металл находится по существу в активном состоянии, а катодная поверхность составляет основную часть системы (поляризуемость катода невелика), электрохимическая защита может потребовать больших токов. Поэтому при осуществлении электрохимической защиты металла, находящегося в щели, приходится, кроме обычной задачи определения защитного потенциала, для данных условий решать и такие вопросы, как распределение тока между открытой поверхностью и щелью, распределение потенциала по глубине зазора и т. д. В определенных условиях (плохо проводящие среды, узкие зазоры) может оказаться, что ответвляе-люго тока будет недостаточно для сдвига потенциала в желаемом направлении.  [c.269]

Следует иметь в виду, что характер кривых анодной поляризации для надрезов будет зависеть от величины приложенных растягиваю-ш их напряжений и концентрации активаторов в растворе. Они будут тем больше отличаться по значению потенциала перепас-сивации и по величине тока пассивации, чем больше разница в приложенных напряжениях и концентрациях активаторов. В ряде случаев вообще невозможно достигнуть пассивного состояния надрезов, если приложенные напряжения достаточно велики. Возникающие разности потенциалов вызывают возникновение локального тока, который будет увеличивать скорость растворения металла в надрезах, при этом роль локальных токов особенно значительна в момент образования надрыва пленки или свежей трещины, затем их влияние резко ослабевает вследствие поляризации.  [c.62]

Добавки фторида в кислотную ванну сдвигают в отрицательную сторону начЗоТьный потенциал металла и сильно активируют анодный процесс растворения, препятствуя анодному окислению металла — на анодных кривых появляются линейные участки, в пределах которых поляризация анода мала, и металл интенсивно растворяется. С увеличением концентрации фторида длина активного участка анодной кривой растет, возрастает и величина критической плотности тока , после достижения которой начинается процесс анодирования (фиг. 9). Труднее (при больших плотностях тока) начинается процесс анодирования в солянокислой среде.  [c.142]

Наконец, в-третьих, применение гамма-спектрометров позволяет избежать ошибок, связанных с наличием в образце поверхностных или объемных микропримесей. Если микропримеси обладают большим сечением активации и сильно активируются при облучении нейтронами, то в процессе испытаний, переходя в раствор вместе с основным металлом, они могут вносить существенный вклад в суммарную радиоактивность. К чему это может привести, показывают данные Дикинсона, Ирвина и Уинн-Джонса [9], которые обнаружили, что при анодном растворении радиоактивных образцов платины в соляной кислоте определяемое по суммарной активности количество платины, переходящей в раствор в начальный период поляризации, может в сотни раз превышать истинную величину, измеренную по току.  [c.96]

Например, при анодной поляризации, если наступает явление пассивности (условие, при котором скорость растворения металла, т. е. переход его ионов в раствор, резко замедляется), анодная кривая вследствие большой поляризуемости круто отклоняется в сторону положительных значений потенциала, что объясняется малой скоростью коррозии металла в анодной среде. Наоборот, при отсутствии явления пассивности анодные поляризационные кривые пологие. Это указывает на сравнительно небольшую анодную поляризуемость и протекание коррозионного процесса без заметного тормолсения.  [c.58]

I мин. С этой целью были применены источник постоянного тока, включенный в цепь через определенное сопротивление, и специальное приспособление, переключающее полюса тока, так что исследуемый электрод поочередно подвергался анодной и катодной поляризации симметричным током постоянной величины. При этом указанные авторы наблюдали, что в случае небольших скоростей переключения металл растворялся с образованием комплексных соединений, которые частично диффундировали в глубь раствора, а при обратной катодной поляризации происходило преимущественное выделение водорода. С увеличением частоты переключений убыль веса электрода в результате растворения уменьшалась, так как наряду с выделением водорода при катодной поляризации начинал выделяться металл. Изменение веса электрода с изменением частоты переключения М. Леблан объясняет тем, что при анодной поляризации скорость перехода ионов металла в раствор при высоких частотах значительно больше скорости комплек-сообразования, благодаря чему при последующей катодной поляризации происходит выделение металла, а не водорода.  [c.161]


На рис. 2.22 показана кривая для никеля в 0,5 М Н2504 [10], иллюстрирующая основные особенности анодного поведения металла, представляющие интерес с точки зрения его коррозионной стойкости. Видно, что в кислых растворах никель способен пассивироваться, причем размеры области пассивации ОЕ) значительны ( 0,5 В). Возможность пассивации не предсказывается равновесной диаграммой потенциал — pH, однако именно пассивация является одной из причин того, что на практике коррозионная стойкость никеля в кислых растворах оказывается лучше, чем это следует из рассмотрения условий термодинамического равновесия. Вторая н, возможно, более важная причина связана с тем, что активная область (ЛВС) при анодной поляризации никеля значительно больше, чем при анодной поляризации многих других металлов. Этот факт, а также то, что в электрохимическом ряду никель лишь слегка отрицателен по отношению к равновесию Н+/Нг, означает, что на практике скорость растворения никеля в кислых растворах будет небольшой в отсутствие более сильных окислителей, чем Н+, или веществ, способных ускорять кинетику анодной реакции.  [c.138]

Приведенные исследования [49] показали, что в области потенциалов, между значениями от —0,1 до 1,2. 9 в растворах серной кислоты нержавеющая сталь будет находиться в пассивном состоянии и иметь, следовательно, повышенную коррозионную устойчивость. При повышении потенциала до более положительных значений, чем -Н1,2 в, в связи с наступлением явления транспассивности скорость растворения может опять увеличиться. В целях осуществления анодной электрохимической защиты нержавеющей хромо-никелевой стали в растворах серной кислоты рекоамендуется поддерживать ее потенциал при значениях от - -0,3 до. + 1,0 в. Меньшие значения потенциала (при меньшей плотности тока) опасны, так как могут сопровождаться неполнотой пассивирования. Более положительные потенциалы (при больших плотностях анодного тока) будут вызывать некоторое увеличение анодного растворения стали в соответствии с увеличивающимся значением плотности тока. Однако, даже если при анодной поляризации потенциал сместится до более положительных значений, чем +1,2 в, когда принципиально становится возможным протекание раство рения стали с переходом в раствор ионов металлов высшей валентности, то скорость такого растворения будет незначительна, если плотности тока анодной поляризации останутся достаточно малыми. Например, при поляризации током плотностью.  [c.319]

Почвы, содержащие органические гуминовые кислоты, отличаются агрессивностью по отношению к стали, цинку, свинцу и меди. Общая кислотность такого грунта точнее характеризует его агрессивность, чем только значение pH. Заметные концентрации Na l и N82804 придают трудноосушаемым почвам, встречающимся на юге Калифорнии, высокую агрессивность. Помимо увеличения активности локальных элементов при повышении электропроводимости почвы большое значение приобретают макро-гальванические элементы большой протяженности, возникающие вследствие различий концентрации О2 в почвах разного состава или неоднородности поверхности металла. Аноды и катоды могут находиться на расстоянии нескольких километров друг от друга. Грунт с низкой Электропроводимостью чаще всего менее агрессивен, чем высокоэлектропроводный, из-за малого количества влаги или наличия растворенных солей или и того и другого вместе. Однако электропроводимость сама по себе не является показателем агрессивности немалую роль играет характеристика анодной или катодной поляризации металла в данном грунте, [6].  [c.183]

Следует отметить, что при известных условиях адсорбция может привести к пассивации и тогда, когда ингибитор не восстанавливается. В этом случае, однако, требуется либо присутствие в коррозионной среде каких-нибудь других окислителей, либо наложения-некоторой анодной поляризации. Примером могут служить бензоат-ионы, которые при определенных условиях переводят металл, в частности железо, в пассивное состояние и обеспечивают его защиту от коррозии [14 194 195 205 239]. При этом оказывается, что смещение потенциала в положительную сторону и пассивное состояние металла достигаются лишь в присутствии растворенного кислорода и при определенной минимальной степени покрытия поверхности металла ингибитором. Чем положительнее потенциал образца, тем меньшие объемные концентрации ингибитора требуются для достижения такой степени покрытия. После того, как металл запассивирован на его поверхности не обнаруживается значительных количеств бензоата. Можно предположить поэтому, что при смещении потенциала в положительную сторону и формировании оксидной пленки относительно слабо связанные с поверхностью ионы бензойной кислоты (их удельный заряд мал, а специфическая адсорбиру-емость выражена слабо) вытесняются либо ионами гидроксила, обладающими большим удельным отрицательным зарядом и повышенной специфической адсорбируемостью, либо атомами кислорода, либо растущей пленкой оксида.  [c.51]

Из фиг. 14 видно, что у образцов с окалиной анодная и катодная поляризация больше, чем у образцов без окалины, т. е. окалина — одновременно менее эффективный анод и катод. Такой же эффект дают неэлектропроводящие пленки, которые, экранируя поверхность металла, создают повышенную истинную плотность тока в порах и тем самым повышают значение поляризации. Этот механизм весьма правдоподобен для окалины на сплаве ЭИ435, являющейся хорошим изолятором. Удаление окалины с нихрома идет за счет анодного под-травливания под ней металла. Выделяющийся при электролизе газообразный кислород облегчает отрыв окалины от поверхности металла. Растворения самой окалины в практически  [c.68]


Смотреть страницы где упоминается термин Анодное растворение металлов при больших анодных поляризациях : [c.78]    [c.41]    [c.89]    [c.164]    [c.196]    [c.10]    [c.209]    [c.224]    [c.336]   
Смотреть главы в:

Теоретические основы коррозии металлов  -> Анодное растворение металлов при больших анодных поляризациях



ПОИСК



Анодная поляризация

Анодное растворение

Анодное растворение металлов

Анодный

Поляризация

Растворение

Растворение металла

Растворение при поляризации



© 2025 Mash-xxl.info Реклама на сайте