Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сингулярное решение Стокса

Сингулярное решение Стокса  [c.288]

Одна из трудностей решения уравнений Навье—Стокса при больших числах Рейнольдса связана с сингулярностью — наличием малого параметра при старших производных. Созданная Прандтлем [1] теория пограничного слоя позволила в значительной мере преодолеть эту трудность. Разделение области решения на пограничный слой и подобласть регулярного решения вызвало к жизни специальную математическую теорию.  [c.179]


Изобретение Г-интегрирования позволяет любому студенту легко и единообразно выводить подобные основополагающие формулы, связывающие силовые и энергетические характеристики сингулярности любого физического поля с интенсивностью этой сингулярности, описываемой некоторым множителем в сингулярном решении. Таким путем из соответствующих инвариантных Г-интегралов можно получить (соответствующие вычисления были проведены в [1 —12]) все известные физические законы о классических взаимодействиях закон Ньютона взаимодействия двух точечных масс — в теории тяготения законы Кулона, Био — Савара, Фарадея — в теории электромагнетизма формулу Жуковского — Чаплыгина и формулы для сил, действующих на источники, впхревые линии и кольца, — в гидродинамике идеальной жидкости формулу Стокса — в гидродинамике вязкой жидкости формулу Пича — Келера — в теории дислокаций формулу Ирвина — в линейной механике разрушения формулу Эшелби — в теории точечных включений и др. Таким же путем для новых типов сингулярностей, или новых физических полей, или новых комбинаций известных физических полей можно получать новые закономерности.  [c.360]

Приближение Озеена и высшие приближения. Полностью безынерционное обтекание сферы является адекватным эксперименту лишь в предельном случае Ке 0. Уже при Ке = 0,05 по данным [219] погрешность оценки сопротивления по формуле (2.2.19) составляет 1,5 ч- 2%, а при Ке = 0,5 находится в пределах 10,5 ч- 11%. По этой причине оценкой для коэффициента сопротивления f = 12/Ке можно пользоваться только при Ке < 0,2 (максимальная погрешность в этом случае не превышает 5%). Попытка улучшить приближение Стокса простым итерационным учетом конвективных членов приводит к уравнению, для которого нельзя построить решение, удовлетворяющее условию на бесконечности. Этот факт известен как парадокс Уайтхеда, происхождение которого связано с сингулярностью решения на бесконечности.  [c.52]

Праудмен и Пирсон [49] установили, что решение Озеена нужно рассматривать как равномерно справедливое нулевое приближение решения уравнений Навье — Стокса при малых числах Рейнольдса. Хотя его и можно использовать для оправдания закона Стокса, но нельзя непосредственно применить для получения поправки первого порядка к этому закону того же типа, что и в уравнении (2.6.5). Если обозначить решение уравнения Озеена через (vq, Ро), то Праудмен и Пирсон указали, что это поле, а не поле Стокса, примененное в методе возмуш,ений типа Уайтхеда, должно привести к удовлетворительному начальному приближению для описания инерционных эффектов при малых числах Рейнольдса. Вследствие сложной структуры уравнений Озеена этот подход, наверное, не может быть продолжен далее. В некотором смысле Праудмен и Пирсон отстаивали другой метод возмущений для решения уравнений Навье — Стокса при малых числах Рейнольдса. Этот метод сингулярных возмущений, схематически более сложный, чем комбинированный метод Уайтхеда — Озеена, более удобен на практике. При его помощи удается получить приближенные поля возмущений, равномерно справедливые во всем объеме жидкости, и определить подходящие решения, которые локально справедливы в отдельных областях вблизи и вдали от тела. Это — внутреннее и внешнее решения, каждое из которых единственным образом определяется асимптотическим сращиванием этих решений в области их общей справедливости.  [c.63]


Тамада и Фудзикава [61], используя уравнения Озеена, исследовали двумерное обтекание бесконечной полосы параллельных цилиндров в общем случае, когда направление набегающега потока образует произвольный угол с осью полосы. Они пока- зали, что для течения, перпендикулярного к полосе, сопротивление каждого цилиндра стремится в пределе при числе Рейнольдса, стремящемся к нулю, к результату, полученному на основе уравнений Стокса. Для течения, параллельного полосе цилиндров (но перпендикулярного продольной оси каждого цилиндра в полосе), ограниченное решение уравнения Стокса не получается, как это и предполагалось из результатов Краковского и Чэрнеса. Таким образом, при любом косом обтекании плоской сетки равновеликих параллельных цилиндров не может существовать решение уравнения Стокса. Однако возможно получить удовлетворительную аппроксимацию, основываясь на решении уравнений Озеена или, более точно, используя методы сингулярных возмущений  [c.67]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

В более общем виде задача была рассмотрена Мюллером [212], который исходил из полных уравнений Навье — Стокса. Последние были сведены к системе обыкновенных дифференциальных уравнений и Мюллер попытался построить решение, пользуясь сообрагке-ниями теории пограничного слоя. В результате было получено решение, близкое к решению Кука. Решения уравнений Навье — Стокса того же класса были получены в работах Лонга [199, 200], по без учета сингулярности на оси и условий прилипания па плоскости.  [c.38]


Получено асимптотическое решение уравнений Навье-Стокса при больших числах Рейнольдса, описывающее влияние тонкого продольного вихря постоянной циркуляции на развитие двумерного стационарного ламинарного пограничного слоя несжимаемой жидкости на плоской пластине. Установлено, что в узкой области на поверхности пластины, вытянутой вдоль вихревой нити, вязкое течение описывается уравнениями трехмерного пограничного слоя. Изучено решение этих уравнений при малых значениях циркуляции вихревой нити. Обнаружен коллапс решения уравнений двумерного предотрывного пограничного слоя, вызванный сингулярным поведением трехмерных возмущений вблизи точек нулевого продольного трения.  [c.97]

Особое место в многообразии течений со взаимодействием занимает теория кромочного (marginal) отрыва, созданная при анализе пограничного слоя на передней кромке тонкого профиля, установленного под углом атаки [2]. Обнаружено критическое значение угла атаки, при котором градиент давления неблагоприятен, а напряжение трения на поверхности тела обращается в нуль лишь в одной точке, оставаясь во всех остальных положительным. Решение уравнений пограничного слоя имеет в этой точке слабую особенность, но является продолжимым через нее вниз по потоку. Как было показано в [3, 4], в окрестности точки нулевого трения вследствие реакщ1и внешнего потенциального потока на сингулярное поведение в ней гидродинамических функций формируется область взаимодействия пограничного слоя с внешним течением протяженностью Аде = 0(Re ), где Re - характерное число Рейнольдса. При этом задачу о взаимодействии удается свести к нелинейному интегродифференциальному уравнению относительно поверхностного трения Л(лг). Численное решение уравнения выявило два важнейших его свойства несуществование решений при превышении критического угла атаки и неединственность [4-6]. Теория кромочного отрыва, объяснившая структуру решения уравнений Навье-Стокса вблизи точки бифуркации по параметру, инициировала исследование целого ряда схожих физических задач.  [c.97]


Смотреть страницы где упоминается термин Сингулярное решение Стокса : [c.251]   
Смотреть главы в:

Методы граничных элементов в прикладных науках  -> Сингулярное решение Стокса



ПОИСК



Сингулярность

Сингулярные решения

Стокс



© 2025 Mash-xxl.info Реклама на сайте