Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защита металлов от газовой коррозии

МЕТОДЫ ЗАЩИТЫ МЕТАЛЛОВ ОТ ГАЗОВОЙ КОРРОЗИИ  [c.146]

Один из способов защиты металла от газовой коррозии заключается в диффузионном насыщении поверх-  [c.47]

На целенаправленном смещении равновесия основан один из методов защиты металлов от газовой коррозии — создание защитных атмосфер.  [c.30]

Защита металлов от газовой коррозии  [c.23]

Защитные покрытия. В некоторых случаях использование дорогих жаростойких сплавов неоправданно. Вместо них для защиты металла от газовой коррозии используют защитные покрытия. Жаростойкие покрытия делятся на две принципиально отличающиеся друг от друга группы — металлические и неметаллические.  [c.75]


Основными методами защиты металлов от газовой коррозии являются  [c.37]

Глава 3 МЕТОДЫ ЗАЩИТЫ МЕТАЛЛОВ ОТ ГАЗОВОЙ КОРРОЗИИ [1, 4, 12, 17-20, 371  [c.64]

Глава IV. Методы защиты металлов от газовой коррозии  [c.4]

Один из практических методов защиты металлов от газовой коррозии — применение защитных атмосфер (создание условий, исключающих термодинамическую возможность протекания коррозионного процесса). Изменение изобарно-изотермического потенциала процесса взаимодействия этих атмосфер с металлами должно удовлетворять условию AZ> 0. В табл. 7 приведены данные соответствующих расчетов возможности взаимодействия кислорода, окислов углерода и паров воды с металлами при 500 и 1000° С.  [c.88]

Защита от газовой коррозии. Для защиты металлов от газовой коррозии можно применять различные способы. Наиболее эффективным способом защиты от окисления при высоких температурах является жаростойкое легирование, т. е. введение в состав сплава компонентов, повышающих его жаростойкость. Основные элементы, способствующие созданию защитного слоя на обычных железоуглеродистых, никелевых и других сплавах,— это хром, алюминий и кремний. Эти элементы легче окисляются при высоких температурах на воздухе, чем легируемый металл, и образуют более устойчивую окалину.  [c.57]

Стеклосмазки применяют при горячей обработке металлов давлением (прессование, штамповка) для снижения трения, улучшения качества поверхности изделий, увеличения стойкости инструмента и уменьшения теплопотерь. Защитные стеклянные покрытия используют в процессе термообработки металлов и сплавов для защиты их от газовой коррозии при нагреве.  [c.471]

Наиболее эффективное средство защиты стали от газовой коррозии — легирование. В качестве легирующих элементов, улучшающих жаростойкость, наиболее часто применяют хром, кремний и алюминий, окисляющиеся> легче железа. Совместно с окислами железа они образуют на поверхности стали пленку сложного состава, препятствующую интенсивному окислению. Защитное действие пленки поддерживается непрерывной диффузией легирующих элементов к поверхностному слою, где они взаимодействуют с кислородом. Диффузия легирующего элемента протекает тем быстрее, чем меньше размеры его атомов, так как атомы малых размеров легче перемещаются в кристаллической решетке основного металла. Этим отчасти объясняется хорошее защитное действие хрома, алюминия и кремния, атомы которых меньше атомов железа.  [c.46]


Наконец, одним из практических методов защиты металлов от коррозии является создание условий, уменьшающих или полностью исключающих возможность протекания коррозионного процесса (применение защитных газовых атмосфер, обескислороживание воды, катодная защита), которые могут быть рассчитаны с помощью термодинамики.  [c.11]

Выбор теплоизоляционных покрытий сопряжен с разрешением известных противоречий. Обычно покрытие одновременно с тепловой защитой должно обеспечивать защиту от газовой коррозии, т. е. обладать достаточной жаростойкостью. В первом случае желательно применять пористое тугоплавкое покрытие, во втором — наиболее плотное. Увеличение толщины покрытия, приводящее к улучшению теплоизоляции и жаростойкости, отрицательно сказывается на прочности соединения с основным металлом. Поиски оптимальных путей повышения теплоизоляции без уменьшения жаростойкости и прочности соединения — одна из важных задач при выборе и разработке технологии напыления защитных покрытий.  [c.89]

Взаимодействие металлов с газовой атмосферой может приводить или к образованию твердых слоев (окислов, нитридов, карбидов) на поверхности металла, или к образованию летучих веществ (галогенидов). Последний случай наиболее опасный и требует замены металлических материалов. При образовании устойчивых слоев на поверхности металлов снижается скорость коррозии и они могут служить средством защиты металлов от коррозии.  [c.21]

Назначение покрытий разнообразно. В большинстве случаев покрытия наносят на металлические поверхности с целью защиты их от химической коррозии активных газовых, жидкостных или комбинированных фед. А в некоторых случаях они имеют противоэрозионное назначение. Распространено нанесение покрытия с целью тепловой защиты изделия. В специальных случаях наносят покрытия с магнитными, полупроводниковыми или проводниковыми свойствами либо диэлектрическими свойствами. Кроме черных металлов и сплавов в защитных покрытиях нуждаются цветные металлы (медь, латунь), тугоплавкие легкоокисляющиеся металлы (молибден, вольфрам), графит, металлокерамические  [c.249]

К способам защиты от газовой коррозии относится процесс диффузионного насыщения поверхностных слоев стали различными металлами. Для защиты металла нужен плотный, свободный от пор слой окалиностойкого материала, очень прочно сцепленный с основным металлом.  [c.220]

Стеклоэмалевые покрытия находят широкое применение в машиностроении, химической промышленности, строительстве, в быту для защиты металлов и сплавов от воздействия агрессивных сред, газовой и атмосферной коррозии, придают изделиям красивый вид. При этом срок службы покрытий должен быть достаточно большим. Если стеклоэмаль наносят на заготовки и детали для защиты металла от окисления при технологических нагревах (при термообработке, штамповке, прессовке), то после выполнения соответствующей высокотемпературной технологической операции покрытие должно легко, зачастую самопроизвольно, удаляться с поверхности защищаемых полуфабрикатов [52].  [c.128]

Для предупреждения и защиты металлов и сплавов при высоких температурах от газовой коррозии рекомендуется следующее.  [c.663]

Книга посвящена проблемам защиты металлов от коррозии ингибиторами. Рассмотрены механизм действия ингибиторов в нейтральных и кислых электролитах, адсорбция ингибиторов, электрохимическая кинетика коррозионных процессов и пассивность металлов. Описаны защитные свойства ингибиторов и практика их применения в промышленности и быту для травления металлов, водоподготовки, защиты теплообмен,ной аппаратуры, оборудования нефтяных и газовых месторождений, изделий машиностроения и др.  [c.2]

Защита от коррозионного разрушения химического оборудования, трубопроводов, металлоконструкций является весьма ак-ту альной задачей. Среди множества способов защиты металла от коррозии в атмосферных, газовых условиях, в условиях воздействия агрессивных жидких сред, расплавов солей и металлов — эмалирование металла наиболее эффективно. Институтом разработаны покрытия для эмалирования и внедрены в производство химически устойчивые покрытия для защиты химического оборудования, арматуры, труб и др. изделий от коррозии, (табл. 1).  [c.81]


Защитные покрытия самых разнообразных составов и назначений широко применяют в современном машиностроении и металлургии. Особое развитие в последние десятилетия получила проблема высокотемпературных покрытий для защиты металлов и сплавов от газовой коррозии. Если раньше высокотемпературные защитные покрытия применяли в основном при эксплуатации машин и аппаратов, то в последнее время разработаны новые типы высокотемпературных покрытий, предназначенных для защиты металлических заготовок при нагреве перед ковкой, штамповкой, прокаткой, прессованием, закалкой, при отжиге и т. п. Эти покрытия иногда называют защитно-технологическими, временными, кратковременного действия, разового применения, технологическими и т. п.  [c.3]

Защита металлов от коррозии обработкой внешней среды. Сущность этого метода защиты — удаление из окружающей среды некоторых реагентов, вызывающих коррозию, или добавление во внешнюю среду ингибиторов — специальных веществ, нейтрализующих вредное действие таких реагентов и замедляющих коррозию. Так, если коррозия металла протекает в газовой среде, где в качестве агрессивного реагента — стимулятора коррозии — используется кислород, то из этой среды удаляют кислород или уменьшают его количество. Например, отжиг металла при высоких температурах осуществляется в защитной атмосфере с уменьшенным содержанием кислорода. Иногда нагрев металла до высоких температур осуществляется в безокислительной или нейтральной атмосфере, в которую подают газообразный азот, защищающий металл от окисления.  [c.230]

Развитие многих отраслей современной техники в значительной степени зависит от успешного применения для ответственных деталей машин и конструкций защитных покрытий, которые предохраняли бы рабочие поверхности от различных видов износа и коррозии в агрессивных газовых и жидких средах в широком интервале температур. Достаточно отметить, что применение конструкционных высокотемпературных материалов на основе тугоплавких металлов — молибдена, вольфрама, тантала, ниобия, ванадия для ракетной и космической техники, авиации, ядерной энергетики немыслимо без разработки и использования соответствующих защитных покрытий. Обладая необходимыми механическими свойствами при высоких температурах (1000° С и выше), эти материалы катастрофически окисляются уже при температурах выше 700—800° С. Попытки решить проблему обеспечения окалиностойкости тугоплавких металлов и их сплавов металлургическим путем, т. е. подбором легирующих добавок, пока практически не привели к серьезным успехам. В то же время применение защитных покрытий во многих случаях оказалось эффективным. В настоящее время общепризнанно, что применение покрытий для защиты высокотемпературных материалов от газовой коррозии — наиболее перспективный и реальный путь решения этой проблемы [71, 72].  [c.6]

Защита металлов от окисления при высоких температурах (газовая коррозия) сводится в основном к повышению жаростойкости металлов различными путями жаростойким легированием, применением печей для термической обработки с защитной атмосферой, а также нанесением защитных диффузионных покрытий (ом. стр. 64—78).  [c.19]

В технике защиты от коррозии широко применяются неорганические покрытия, состоящие из оксидов, фосфатов, фторидов и других неорганических соединений. Неорганические покрытия получают химическими и электрохимическими методами оксидированием, хроматнрованием, фосфатированием, анодированием. К неорганическим покрытиям относятся эмали, которые применяются в бытовой технике и для защиты металлов от газовой коррозии при высоких температурах. Сравнительно недавно начал применяться электрофоретический метод нанесения покрытий.  [c.50]

Один из способов защиты металла от газовой коррозии заключается в диффузионном насыщении поверхностных слоев различными элементами. При насыщении хромом этот процесс называется хромированием, алюминием— алитированием, азотом — азотированием. Для защиты металла необходим плотный, свободный от пор слой окал иностойкого материала, очень прочно связанный с основным металлом.  [c.320]

Методы защиты металлов от газовой коррозии следующие жаростойкое легирование, нанесение покрытий и введение в газовую фазу компонентов, образующих на поверхности металла защитную пленку. Последний метод еще не нашел широкого применения. Жаростойкость железа мала, что исключает применение низколегированных углеродистых сталей в окислительных средах при Т > 500 С. Созданы высокожаростойкие стали, скорость окисления которых ниже, чем у Fe, в сотни и тысячи раз (окалиностойкие стали) 11].  [c.417]

Основным средством защиты металлов от газовой коррозии является легирование такими компонентами, которые улучшают свойства защитных пле-2 Г. Т. Бахвалов, А. В. Тупуовсуяя ,  [c.17]

Защитная атмосфера, и0кусстве1ни0 создаваемая для защиты металла от газовой коррозии, часто состоит из инертных или восстановительных газов.  [c.43]

Защита металлов от газовой коррозии обеспечивается объемным или но-верхностным легированием, а также созданием защитных атмосфер. Существует несколько теорий жаростойкого легрования.  [c.63]


Химическую коррозию в сухих газах при высоких температурах называют также газовой коррозией. В большинстве случаев газовая коррозия происходит вследствие окисления металла кислородом, содержащимся в газах в свободном или связанном состоянии. Основрым способом защиты стали от газовой коррозии является легирование.  [c.5]

Специалистами ВНИИГАЗа и ВНИИнефтемаша установлено, что основным повреждением скважинного оборудования АГКМ является негерметичность затрубного пространства и, как следствие, наличие в нем газовых шапок. Негерметичность затрубного пространства может быть вызвана негерметичностью лифтовой колонны, элементов подземного оборудования или уплотнений трубных и колонных головок. В свою очередь, негерметичность последних в значительной степени связана с применением уплотняющих элементов из эластомеров, которые в процессе эксплуатации теряют свои пластические свойства. Конструктивные особенности автоклавных уплотнений подвески насосно-компрессорных труб способствуют появлению перетоков через уплотнения. Наличие негерметичности вызывает попадание пластового газа в зоны технологического оборудования, где контакт металла с сероводородсодержащей средой не предусмотрен проектной схемой. Это приводит к значительному ужесточению условий эксплуатации элементов газопромыслового оборудования и, тем самым, к повышению риска его выхода из строя. Одним из последствий наличия негерметичности затрубного пространства и уплотнений колонных и трубных головок является неработоспособность проектной системы ингибиторной защиты металла от коррозии.  [c.173]

Некоторые проблемы, возникающие на объектах нефтяной и газовой промышленности вследствие использования методов и средств ингибиторной защиты, описаны в [181]. Обсуждаются, например, вопросы использования за рубежом ингибиторов в глубоких газоконденсатных скважинах с агрессивной Н28-и С02-содержащей продукцией и указывается, что обеспечение эффективной ингибиторной защиты в этих условиях является сложной и отнюдь не всегда осуществимой научно-технической задачей. Предполагается, что последнее в значительной степени связано с растворимостью (диспергируемостью) ингибитора в пластовых флюидах. Отмечается также, что иногда ингибитор, обеспечивая высокую защиту металла от коррозии в продукции одного пласта, является совершенно неэффективным в продукции другого. Такое поведение ингибиторов обусловлено степенью их совместимости с пластовыми водами ингибитор может хорошо растворяться (диспергироваться)  [c.339]

За годы десятой пятилетки грузооборот трубопроводного транспорта нефти и нефтепродуктов возрос более чем в два раза. Это вызвало интенсивное строительство трубопроводов, резер-вуарных парков для хранения нефти и нефтепродуктов, газголь-д зов и других объектов нефтяной и газовой промышленности. Защита этих сооружений от коррозии является одной из важных задач народного хозяйства. По оценке специалистов, ежегодные убытки от коррозии по отдельным отраслям народного хозяйства составляют несколько миллиардов рублей. Так, например, по данным III Международной научно-технической конференции по проблеме Разработка мер защиты металлов от коррозии , состоявшейся в 1980 году в Варшаве, потери от коррозии за 1977 год в ПНР составляли 3,15 млрд. рублей, в США за 1975 год —70 млрд. рублей. На этой же конференции научно-исследовательский институт ГДР привел интересные данные о влиянии агрессивных сред на окружающую среду и об актуальности борьбы с коррозией металлов. На конференции был рассмотрен широкий круг вопросов по коррозионной защите и сокращению потерь металлов от коррозии.  [c.3]

Однако применение сталей, легированных хромом, молибденом и другими дорогостоящими компонентами, не всегда приемлемо как по техническим причинам, например, из-за отсутствия поковок необходимых размеров из стали необходимого легирования, так и вследствие существенногй црвышения стоимости сосудов и трубопроводов высокого давления. В таких случаях защиту стали от водородной коррозии можно осуществить другим способом. Сущность его состоит в уменьшении давления водорода в зоне его контакта со сталью при сохранении давления водорода в газовой фазе в соответствии с заданным технологическим процессом. Давление водорода на границе контакта с металлом уменьшается до такого значения, при котором количество водорода, растворенного в стали, недостаточно для протекания реакции гидрогенизации карбидной фазы углеродистой или низколегированной стали.  [c.818]

В руководстве даны 34 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов от коррозии (защитные покрытия, электрохимическая защита, применение замедлителей). Во введении авторы сочли необходи.мым более детально остановиться на принятых современных методах обработки и оформления результатов экспериментальных исследований (ведение отчета, оценка точности измерений и основные приемы графического анализа опытных данных). При недостаточном бюджете времени или других затруднениях требование оценки точности измерений может быть опущено. Здесь также кратко указаны сведения о работе с некоторыми наиболее часто встречающимися приборами и аппаратами коррозионной лаборатории, а также сведения о мерах безопасности при проведении лабораторных работ. В приложении собрано минимальное количество справочных данных, необходимых при выполнении работ коррозионного практикума.  [c.7]

Для защиты котлов от стояночной коррозии применяют сухую, мокрую и газовую консервацию, а также консервацию методом избыточного давления. При сухой консервации из котла полностью удаляют воду, а поверхность металла поддерживают сухой. Для этого после удаления воды и тщательной вентиляции в барабаны помещают влагопоглотите-ли (например, безводный хлористый кальций СаСЦ из расчета 1 кг на 1 м объема). Люки и арматуру котла герметически закрывают. Влагопоглотители проверяют первый раз через 3.. . 4 недели, а затем каждые два месяца. Вместо хлористого кальция в барабан можно поместить негашеную известь СаО или силикагель из расчета 2 кг на 1 м объема.  [c.242]


Смотреть страницы где упоминается термин Защита металлов от газовой коррозии : [c.364]    [c.113]   
Смотреть главы в:

Химическое сопротивление материалов и современные проблемы защиты от коррозии  -> Защита металлов от газовой коррозии

Техника борьбы с коррозией  -> Защита металлов от газовой коррозии



ПОИСК



Газовая коррозия металлов

Защита газовая

Защита металлов

Защита металлов от коррозии

Защита от газовой коррозии

Коррозия газовая

Коррозия металлов

Методы защиты металлов от газовой коррозии

Химическая (газовая) коррозия металлов и методы защиты от нее



© 2025 Mash-xxl.info Реклама на сайте