Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атомное ядро возбужденное

Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.  [c.280]

Классические опыты Резерфорда с сотрудниками ) и Позе ) по искусственной радиоактивности, а также опыты Боте и Беккера по возбуждению ядерного излучения подтверждают точку зрения о том, что атомное ядро поддается тем же общим методам исследования, которые так успешно применялись для определения внеядерных свойств атома. Результаты этих работ показывают, что особенно полезны исследования ядерных переходов, искусственно возбужденных в лаборатории. Таким образом, широкая разработка методов возбуждения атомных ядер представляет собой очень интересную задачу, ее решение, вероятно, явится ключом к новому миру явлений, миру атомного ядра.  [c.147]


Поэтому представляет интерес исследование наиболее многообещающих способов возбуждения атомных ядер. Имеются два основных метода возбуждение в результате поглощения излучения (гамма-излучения) и возбуждение с помощью непосредственных столкновений частиц высоких энергий с атомными ядрами.  [c.147]

Атомное ядро, находящееся в возбужденном энергетическом состоянии, может испустить фотон гамма-излучения, совершая переход в основное, или невозбужденное, состояние. Может произойти также обратный процесс ядро,  [c.341]

Состояние ядра с наименьшим значением энергии из всех возможных называется основным (невозбужденным) состоянием. При нормальных условиях атомные ядра всегда находятся в основных состояниях. Если внешними воздействиями перевести ядро в возбужденное состояние, т. е. в квантовое состояние с более высоким значением энергии, то оно вернется в основное состояние, испуская гамма-квант или выбрасывая частицу.  [c.92]

Если атомное ядро находится в основном состоянии, то его энергия минимальна и принимается за нулевую. Если же ядро как целое приведено в возбужденное состояние, то оно занимает более высокий энергетический уровень. Энергетические уровни ядра как целого не совпадают с энергетическими уровнями для отдельных нуклонов в потенциальной яме ядра.  [c.179]

Энергия возбуждения для данного атомного ядра принимает ряд квантованных значений, которым соответствуют определенные уровни возбуждения. Самые легкие ядра с массовым числом А. < 4 не образуют набора возбужденных состояний, а имеют только одно значение собственной энергии.  [c.179]

Иное положение мы имеем при взаимодействии падающей частицы с ядром. Атомное ядро представляет собой плотно упакованную структуру нуклонов. Вследствие этого налетающая частица (нуклон), приблизившаяся к ядру на расстояние, равное радиусу действия ядерных сил, вступает в сильное взаимодействие с ближайшими нуклонами ядра и быстро передает им свою энергию. Передав свою энергию, сама влетевшая частица оказывается не в состоянии вылететь из ядра. Образуется ядро, отличающееся от исходного тем, что к нему присоединилась еще одна дополнительная частица (нуклон, а-частица или дру ое легкое ядро) и привнесена энергия этой частицей. Возникшее ядро называется составным или промежуточным ядром. Это новое ядро находится в возбужденном состоянии, привнесенная энергия возбуждения распределена между многими нуклонами ядра. Возбужденное составное ядро может освободиться от избытка энергии или путем выбрасывания частицы, или путем испускания у-фотона.  [c.274]


Средние и тяжелые атомные ядра с Л 100 — 200 представляют собой квантовомеханические системы с большим числом нук-ло. юв. Пользуясь методами термодинамики и статистической физики, можно и в ядерной физике ввести понятия внутриядерная температура, энтропия и т. д.— и связать величину температуры с энергией возбуждения ядра. С этой точки зрения повышение средней энергии нуклонов ядра при захвате ядром налетающей частицы можно рассматривать как повышение температуры ядра. Испускание ядром нейтрона можно рассматривать как процесс испарения, сопровождающийся понижением температуры ядра.  [c.278]

Таким образом, электрон при определенных обстоятельствах можно рассматривать как волну с частотой 10 ° Гц. Такая частота присуща области у-излучения, которое возникает при испускании фотонов возбужденными атомными ядрами.  [c.139]

Энергетическое состояние атомного ядра, соответствуюш,ее минимальному значению его массы покоя, называют основным состоянием. Все остальные энергетические состояния ядра называются возбужденными. Вообще говоря, возбужденное состояние  [c.118]

Сферическое ядро в результате деформации превращается в эллипсоид вращения, способный вращаться вокруг оси, перпендикулярной к оси его симметрии. Однако в отличие от твердого тела вращение атомного ядра рассматривается гидродинамически, поэтому момент инерции ядра оказывается меньше момента инерции твердого тела такой же массы и формы. Обобщенная модель позволяет дать качественное объяснение изменения квадру-польных моментов ядер с изменением Z я N = А —Z (см. рис. 28) и хорошо объясняет структуру первых возбужденных состояний четно-четных ядер с достаточно большим А. Расположение энергетических уровней таких ядер соответствует правилу интер-  [c.199]

Делением называется реакция расщепления атомного ядра (обычно тяжелого) на две (иногда на три) примерно равные по массе части (осколки деления). Тяжелые ядра (Z>90) делятся как после предварительного слабого возбуждения атомного ядра, например в результате облучения его нейтронами с энергией Тп 1 Мэе, а для некоторых ядер даже тепловыми нейтро-на ли (вынужденное деление), так и без предварительного возбуждения, т. е. самопроизвольно (спонтанное деление).  [c.410]

Физические величины, характеризующие свойства атомных ядер, можно разделить на статические, относящиеся к определенному, обычно невозбужденному состоянию ядра, и на динамические, проявляющиеся при ядерных возбуждениях, распадах и реакциях. Важность статических характеристик обусловлена тем, что вследствие своей высокой прочности атомные ядра в очень широком круге явлений участвуют, не возбуждаясь. Важнейшими статическими характеристиками ядра являются  [c.33]

Внутренняя конверсия — это переход возбужденного атомного ядра в состояние с меньшей энергией путем передачи энергии возбуждения электронам ближайших к ядру (/(, L, М) оболочек (электроны внутренней конверсии е ).  [c.430]

ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]


АЛЬФА-ЧАСТИЦА — ядро Не, содержащее 2 протона и 2 нейтрона. Масса А.-ч, т=4,00273 а. е. м,= = 6,644.10 2 г, спин и магн. момент равны 0. Энергия связи 28,11 МэВ (7,03 МэВ на 1 нуклон). Проходя через вещество, А.-ч. тормозятся за счёт ионизации и возбуждения атомов и молекул, а также диссоциации молекул. Длина пробега А,-ч. в воздухе 1=аи , где v — начальная скорость, 0=9,7-10 с см (для Z 3—7 см). Для плотных веществ / 10 см (в стекле /=4-10 см). Многие фундаментальные открытия в ядерной физике обязаны происхождением изучению А,-ч. исследование рассеяния А.-ч. привело к открытию атомного ядра, облучение А.-ч. лёгких элементов — к открытию ядерных реакций и искусственной радиоактивности.  [c.64]

ОБОБЩЕННАЯ МОДЕЛЬ ЯДРА — ядерная модель, одновременно учитывающая как одночастичные (нуклонные), так и коллективные (колебательные и вращательные) степени свободы атомного ядра (см. Коллективные возбуждения ядра). О, м. я. представляет собой дальнейшее развитие оболочечной модели (независимых нуклонов), к-рая не объясняла ряд опытных фактов большие величины электрич. квадрупольных моментов  [c.374]

G энергиями соответствующих переходов в системе, интенсивность эффекта возрастает — в этом смысле методы являются резонансными. В частности, резонанс у-квантов на атомных ядрах заключается в резком возрастании вероятности поглощения (или рассеяния) 7-квантов с энергией, соответствующей возбуждению ядер-ных переходов.  [c.134]

Атомному ядру можно приписать температуру она пропорциональна корню квадратному из энергии возбуждения,  [c.119]

Атомное ядро, находясь в различных состояниях, обладает, вообще говоря, различной полной энергией. Состояние, которому соответствует наименьшая возможная для данного ядра энергия, называется основным все остальные состояния называются возбужденными.  [c.36]

Упрошенная схема процессов, протекающих в экспонированной эмульсии в наших измерениях, приведена на фиг. 4. Пусть расстояние по вертикали на этой схеме представляет относительную энергию электронов в кристалле бромистого серебра. В темноте все электроны связаны с атомными ядрами и не могут создавать измеримый ток. При освещении некоторые электроны ионов брома переводятся в более богатое энергией состояние в полосе проводимости. Перебрасывается ли электрон непосредственно в полосу проводимости или же верхний уровень оптического перехода расположен несколько ниже полосы, которая достигается в результате теплового возбуждения, для нашей цели несущественно. Важно то, что электроны приобретают свободу передвижения и в наложенном электрическом поле дрейфуют к аноду, создавая измеримый ток. Свободные электроны могут снова упасть в основную (заполненную, нормальную) зону, т. е. вернуться на атомы брома в решетке такой процесс возвращает кристалл в исходное состояние. Если же электроны будут захвачены посторонними центрами, например примесями или нарушениями решетки самого кристалла, то это может привести к образованию зародышей (путем соединения захваченных электронов с компонентами решетки). Эти зародыши образуют скрытое изображение, играющее роль центров конденсации металлического серебра в процессе проявления.  [c.326]

Итак, экспериментальные исследования Резерф< )рда по рассеянию а-частиц при их прохождении через тонкие металлические листки показали, что основная масса атома и положительный электрический заряд сосредоточены в небольшой (lO — 10 м) центральной области атома, именуемой атомным ядром. В нейтральном атоме вокруг ядра обращается Z электронов. Такая мОт дель получила название ядерной модели атома. Ядерная модель атома в сочетании с квантовыми закономерностями объясняет возникновение и структуру атомных спектров процессы возбуждения и ионизации атомов, свойства молекул, свойства твердых тел (металлов) и т. д.  [c.81]

Здесь же заметим, что не следует представлять себе атомное ядро как статическую систему нуклонов, расположенных на дне потенциаль юн ямы. М1югочпсле[шые факты но радиоактивному распаду, но ядерным реакциям и др. показывают, что атомные ядра являются динамическими системами нуклонов и что нуклоны в ядрах могут обладать лишь определенной энергией, т. е. располагаются на определенных энергетических уровнях. Заполнение энергетических уровней нуклонами (фермионалш) происходит в соответствии с принципом Паули. Основному состоянию ядра соответствует такое распределеине нуклонов, при котором заполнены все низшие энергетические уровни. Если же какими-то воздействиями нуклоны ядра переводятся па более высокие незаполненные уровни, то это соответствует возбужденному состоянию ядра.  [c.134]

Эксиеримеитальиые исследоваиия более поздних лет показывают, что из тяжелых ядер, находящихся в сильно возбужденных состояниях, могут вылетать протоны, нейтроны и а-частицы. Экспериментальные данные и современные теоретические представления о ядерных силах нельзя совместить с предположением о длительном существовании а-частиц внутри атомного ядра как индивидуально обособленных образований.  [c.176]

Итак, сущность явления внутренней конверсии состоит в том что возбужденное атомное ядро переходит в состояние с меньшей энергией путелт непосредстверп[ой передачи энергии возбуждения электрону, входящему в состав электронной оболочки атома. Испускание электронов конверсии обусловлено непосредственным электромагнитным взаимодействием ядра с электронами оболочки. Электрон конверсии имеет энергию меньшую энергии возбуждения  [c.259]

Атомное ядро, захватившее нейтрон и пришедшее в сильно возбужденное состояние, аналогично жид1юй капле, испытывает деформацию и может разделиться на две мепьшие части, если энергия возбуждения окажется больше Sf. Эти представления о ядре-капле и были использованы Я- И. Френкелем, Н. Бором и Д. Уилером при рассмотрении процесса деления ядра.  [c.299]


Заметим, что в переходах, сопровождающихся рождением фононов, будут возбуждаться фононы с энергиями, близкими к максимальной энергии АО ахфононного спектра данного кристалла. Длина волны таких фононов минимальна она равна удвоенному межатомному расстоянию (в этом случае соседние атомные ядра движутся в противо-фазе см. 6.1). Последнее как раз и наблюдается, когда ядро, испустившее Y-квант, приобретает всю энергию отдачи и ударяет в соседнее ядро. Для возбуждения колебаний, соответствующих более длинным волнам (иначе говоря, для рождения фононов с энергиями меньше надо, чтобы испускание 7-кванта приводило в движение сразу несколько атомных ядер, что маловероятно. Таким образом, в ядерном резонансном поглощении могут участвовать практически лишь фононы с энергиями, близкими к ниже температура кристалла, тем меньше  [c.210]

Во многих случаях радиоактивного распада исиускармые мястищ сопровождаются гамма-излучением, представляющим собой электромагнитное излучение с очень короткой длиной волны, испускаемое возбужденными атомными ядрами для освобождения от избытка энергии аналогично процессам в атомах, при которых испускаются фотоны. Эти три вида излучения (а, р и у) называются радиоактивностью. Отметим, что протон в свободном состоянии не связан с ядром и является стабиль-  [c.160]

ПОГЛОЩЕНИЕ [резонансное гамма-излучения — поглощение гамма-квантов (фотонов) атомными ядрами, обусловленное переходами ядер в возбужденное состояние света < — явление уменьшения энергии световой волны при ее распространении в веществе, происходящее вследствие преобразования энергии волны во внутреннюю энергию вещества или энергию вторичного излучения резонансное — поглощение света с частицами, соответствующими переходу атомов поглощающей среды из основного состояния в возбужденное) ] ПОЛЗУЧЕСТЬ - медленная непрерывная пластическая деформация материала под действием небольших напряжений (и особенно при высоких температурах) ПОЛИМОРФИЗМ — способность некоторых веществ существовать в нескольких состояниях с различной атомной кристаллической структурой ПОЛУПРОВОДНИК (есть вещество, обладающее электронной проводимостью, промежуточной между металлами и диэлектриками и возрастающей при увеличении температуры вырожденный имеет большую концентрацию носителей тока компенсированнын содержит одновременно лонор ,1 и ак-  [c.260]

РЕАКЦИЯ [термоядерная — реакция слияния легких атомных ядер в более тяжелые, происходящие при высоких температурах 10 К фотоядерная- -расщепление атомных ядер гамма-квантами цепная — реакция деления атомных ядер тяжелых элементов под действием нейтронов, в каждом акте которой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления ядерная — превращение атомных ядер, вызванное их взаимодействием с элементарными частицами, в том числе с гамма-квантами, или друг с другом] РЕВЕРБЕРАЦИЯ — процесс постепенного затухания звука в закрытых помещениях после окончания действия его источника РЕЗОНАНС (есть явление резкого возрастания амплитуды вынужденных колебаний системы при приближении частоты вынужденной силы к собственной частоте колебаний системы акустический — избирательное поглощение энергии фононоБ определенной частоты в парамагнитных кристаллах, помещенных в постоянное магнитное поле антиферромагнитный — избирательное поглощение энергии электромагнитных волн, проходящих через антиферромагнетик, при определенных значениях частоты и напряженности приложенного к нему магнитного поля гигантский — широкий максимум, которым обладает зависимость сечения ядерных реакций, вызванных налетающей на атомное ядро частицей или гамма-квантом, от энергии возбуждения ядра магнитный — избирательное поглощение энергии проходящих через магнетик электромагнитных волн на определенных частотах, связанное с переориентировкой магнитных моментов частиц вещества параметрический — раскачка колебаний при периодическом изменении параметров тех элементов колебательных систем, в которых сосредоточивается энергия колебаний)  [c.271]

ФОСФОРЕСЦЕНЦИЯ — люминесценция, продолжающаяся значительное время после прекращения ее возбуждения ФОТО ДЕЛЕНИЕ — деление атомного ядра гамма-квантами ФОТОДИССОЦИАЦИЯ—разложение под действием света сложных молекул на более простые ФОТОИОНИЗАЦИЯ — процесс ионизации атомов и молекул газов под действием электромагнитного излучения ФОТОКАТОД — холодный катод фотоэлектронных приборов, испускающий в вакуум электроны под действием оптического излучения ФОТОЛИЗ— разложение под действием света твердых, жидких и газообразных веществ ФОТОЛЮМИНЕСЦЕНЦИЯ—люминесценция, возникающая под действием света ФОТОМЕТРИЯ— раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения в процессах его испускания, распространения и взаимодействия с веществом ФОТОПРОВОДИМОСТЬ изменение электрической проводимости полупроводника под действием света ФОТОРЕЗИСТОР — полупроводниковый фотоэлемент, изменяющий свою электрическую проводимость под действием электромагнитного излучения ФОТОРОЖ-ДБНИЕ — процесс образования частиц на атомных ядрах и нуклонах под действием гамма-квантов высокой энергии ФОТОУПРУГОСТЬ — возникновение оптической анизотропии и связанного с ней двойного лучепреломления в первоначально оптически изотропных телах при их деформации  [c.293]

Системы, подобные В. а., образуют атомное ядро и мезон (медоагпом), а также электрон и позитрон (позитроний) для этих систем также получаются аналогичные водородным уровни энергии и спектры. ВОЗБУЖДЕНИЕ АТОМА И МОЛЁКУЛЫ — квантовый переход атома или молекулы с более низкого (напр,, основного) уровня энергии на более высокий при поглощении ими фотонов (фотовозбуждение) или при столкновениях с электронами и др, частицами (возбуждение ударом).  [c.300]

ЗАМЕДЛЕНИЕ НЕЙТРОНОВ — уменьшение кинетич. янергии S нейтронов в результате многократных столкновений их с атомными ядрами среды. Механизм 3. н. зависит от энергии нейтронов. Если S больше порога неупругого рассеяния нейтрона на ядре ( у 0,1 — 10 МэВ), то иейтроны расходуют энергию гл. обр. на возбуждение ядер п ядерные реакции, сопровождающиеся вылетом нейтронов. При одном соударенш нейтрон в среднем теряет значит, долю своей энергии и после небольшого числа столкновений (часто одного) переходят в область энергий Дальне11шее 3. н. происходит только за счёт упругого ядерного рассеяния.  [c.44]

НЕЙТРОННАЯ ФЙЗИКА — совокупность исследований строения вещества с помощью нейтронов (нейтронного излучения), а также исследования свойств самих нейтронов (их внутр, структуры, процессов распада, ЭЛ.-маги, характеристик). В Н. ф. в основном используются нейтроны с энергиями от 10 эВ до Ю эВ (длины волн де Бройля к от 10 до 10" см). Соответственно этому диапазону энергий и длин волн исследуются микрообъекты размерами от 10" см при характерных энергиях возбуждения 10 —Ю эВ (атомные ядра) до видимых в оптич. микроскоп объектов размерами см (вапр., молекулы биополимеров). От-  [c.277]


Притяжение между тождеств, нуклонами в синглет-ном (спин А = 0) i-волновом состоянии приводит к аналогичному эффекту в атомных ядрах (см. Сверхтекучая модель ядра). Однако при этом оказывается, что размер формально введённой куперовской пары порядка или даже больше размера ядра (- й/1/тдг Д Ю фм, т. к, в средних и тяжёлых ядрах Д — 1 МэВ). Поэтому реально связанное состояние пары нуклонов в ядро не образуется II можно говорить только о парных корреляциях протонов и нейтронов в средних и тяжёлых ядрах. Тем не менее многие качеств, эффекты сверхтекучести в атомных ядрах проявляются. Как и в случае электронов в сверхпроводнике, изменяется одно-части чвый спектр нуклонов. Если в несверхтекучем ядре он определяется одночастичными анергиями нуклонов в среднем поле ядра (см. Оболочечная модель ядра), то при учёте корреляции энергии частичных и дырочных возбуждений вблизи поверхности Ферми нейтронов и протонов даются выражением  [c.457]

СПИНОВАЯ ДИФФУЗИЯ — процесс пространствен ного выравнивания неоднородной спиновой поляризации в системе локализов. магн. моментов. В отличие от обычной диффузии, связанной с зшссопереносом, при С. д. распространяется лишь спиновое возбуждение, тогда как сами носители спиновых моментов (парамагн. ионы, радикалы, атомные ядра) не перемещаются.  [c.631]

Мессбауэровская спектроскопия. Применяется эффект Мессбауэра, заключающийся в резонансном поглощении у-квантов атомными ядрами. Необходимое условие этого резонансного поглощения состоит в том, чтобы энергия, которую квант расходует на возбуждение ядра, была в точности равна разности внутренних энергий ядра в возбужденном и основном состояниях. Для наблюдения поглощения у-квантов необходимо искусственно увеличивать перекрытие линий испускания и поглощения с использованием сдвига этих линий за счет эффекта Доплера. Эффект Мессбауэра позволяет получить информацию о нарушениях в окрестности так называемых месс-бауэровских атомов, а следовательно, дает возможность изучения структуры, дефектов структуры или ее изменений.  [c.160]

Многие современные физические методы исследования металлов основаны на изучении взаимодействия объекта с каким-либо видом электромагнитных волн. Помимо классических (оптических, рентгеновских и электронно-микроскопических) методов, используются ядерный магнитный и электронный парамагнитный резонанс [1] методы исследования поверхности (Оже-электронная спектроскопия и дифракция медленных электронов) электронная спектроскопия для химического анализа ионный микрозонд [2] и др. Во всех случаях изучается поглощение. рассеяние падающих или испускание вторичных электромагнитных волн (или пучка электронов, ионов) частицами исследуемой системы. При некоторых энергиях падающего излучения, совпадающих с энергиями соответствующих переходов в системе, интенсивность эффекта возрастает — такие методы являются резонансными. В частности, резонанс укван-тов на атомных ядрах заключается в резком возрастании вероятности поглощения (или рассеяния) у-квантов с энергией, соответствующей возбуждению ядерных переходов.  [c.161]

Деление атомного ядра — это процесс распада возбужденного ядра на 2 (реже 3 и 4) сравнимых по массе ядра-осколка деления. Деление ядер сопровождается испусканием вторичных нейтронов, -квантов и выделением энергии. Делению подвержены ядра всех тяжелых элементов, если только они находятся в достаточно высоких возбужденных состояниях. Процесс деления — это один из возможных путей снятия возбуждения ядра другие конкурирующие процессы испускание f-KBaH-тов, испускание нейтронов и т. п.  [c.929]

Потенциалы ионизации и возбуждения. На освобождение электрона от связи с атомным ядром, вследствие чего и происходит образование положительного иона, необходимо затратить определенное количество энергии. Энергия, израсходованная на отрыв электрона, называется работой ионизации. Работа ионизации, выраженная в электрон-вольтах, называется потенциалом ионизации. Если сообщить связанному электрону газовой молекулы или атома некоторое количество дополнительной энергии, то электрон перейдет на новую орбиту с более высоким энергетическим уровнем, а молекула илн атом будут находиться в возбужденном состоянии. Количество энергии, выраженное в электрон-йОЛЬтах, которое необходимо затратить для возбуждения атома или молекулы газа, называется потенциалом возбуждения. Возбужденное состояние атома или молекулы газа является неустойчивым, и электрон может снова возвратиться на стационарную орбиту, а атом или молекула перейдет в нормальное невозбужденное состояние. Энергия возбуждения при этом передается в окружающее пространство в форме светового электромагнитного излучения.  [c.29]


Смотреть страницы где упоминается термин Атомное ядро возбужденное : [c.250]    [c.392]    [c.115]    [c.301]    [c.263]    [c.436]    [c.690]   
Атомы сегодня и завтра (1979) -- [ c.56 ]



ПОИСК



Атомное ядро

Атомное ядро ядра)

Атомный вес

Возбужденные состояния атомных ядер



© 2025 Mash-xxl.info Реклама на сайте