Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение при ползучести при сложном напряженном состоянии

РАЗРУШЕНИЕ ПРИ ПОЛЗУЧЕСТИ ПРИ СЛОЖНОМ НАПРЯЖЕННОМ СОСТОЯНИИ  [c.138]

Если экспериментальные данные согласуются с уравнением среднего диаметра, то в общем случае состояние образцов аналогично описанному в 1. Однако из-за влияния анизотропии свойств в качестве эквивалентных напряжений при ползучести при сложном напряженном состоянии следует рассматривать напряжения промежуточной величины между изотропными напряжениями Мизеса и Треска. В этом случае распространение трещины становится фактором, обусловливающим время до разрушения. В частности, можно предположить [19], что образование и рост трещин на наружной поверхности цилиндрических образцов, находящихся под внутренним давлением, приводящим к возникновению больших гидростатических напряжений, облегчаются по сравнению с одноосным растяжением круглых образцов, то время до- разрушения цилиндрических образцов уменьшается по сравнению с временем до разрушения круглых образцов при одноосном растяжении. Можно считать, что данные, приведенные на рис. 5.18, соответствуют случаю, когда указанный механизм разрушения обусловливает хорошее совпадение результатов расчетов по уравнению среднего  [c.151]


Рис. 2.11. Диаграмма предельного состояния при сложном напряженном состоянии в условиях хрупкого межзеренного разрушения при ползучести Рис. 2.11. Диаграмма <a href="/info/24046">предельного состояния</a> при <a href="/info/177300">сложном напряженном</a> состоянии в условиях хрупкого <a href="/info/131066">межзеренного разрушения</a> при ползучести
Разрушение в условиях отсутствия стадии ускоренной ползучести также является довольно распространенной. Такое поведение наблюдается у материалов, сравнительно малопластичных при температуре испытания, цилиндрические образцы из которых разрушаются во время стадии // при сложном напряженном состоянии, характеризуемом высокой жесткостью у при нагружении сжатием при растяжении тонколистовых и трубчатых  [c.91]

Из представлений кинетической природы прочности твердых тел [57] вытекает утверждение об отсутствии принципиальных различий в общих закономерностях разрушения при кратковременном и длительном разрыве. На этом основании можно предположить, что влияние вида напряженного состояния на сопротивление разрушению при активном и пассивном деформировании подчиняется одним и тем же качественным закономерностям. Это обстоятельство важно потому, что оценка состоятельности того или иного критерия проводится сопоставлением результатов испытаний при сложном напряженном состоянии с данными расчета, экспериментальных же данных для такой проверки при кратковременном разрыве твердых тел гораздо больше, чем опытов по разрушению при сложном напряженном состоянии в условиях ползучести. Следовательно, общие закономерности влияния вида напряженного состояния на сопротивление разрушению можно выявить с большей достоверностью обработкой и анализом результатов испытаний при кратковременном разрыве и в условиях ползучести.  [c.130]

В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]


Проблема разрушения при ползучести толстостенной трубы под действием внутреннего давления при высоких температурах поддается сравнительно простому теоретическому анализу как проблема ползучести осесимметричного тела в условиях сложного напряженного состояния. Экспериментальные исследования в этом случае также можно провести сравнительно просто. Одновременно следует указать, что эта проблема является очень важной с практической точки зрения, так как при исследованиях непосредственно определяется длительная прочность цилиндрических деталей типа котельных труб или сосудов давления. Деформация лол-зучести и распределение напряжений для этого случая описаны в разделе 4.2.2 в данном разделе авторы обсуждают особенности разрушения при ползучести.  [c.144]

Таким образом, пластическая деформация при цикле нагружения рс вызывает внутренний скачок деформации в направлении растяжения. В результате этого происходит разрушение, трещина образуется в объеме образца, разрушение развивается из внутренней зоны, поэтому влияние атмосферы отсутствует. При цикле нагружения ср деформация ползучести также вызывает скачок деформации в направлении растяжения внутри образца в большом количестве образуются зернограничные трещины, поэтому и в этом случае влияние атмосферы отсутствует. В отличие от этого при испытаниях о. рр м сс циклами нагружения деформация одинакового Вида возникает и при растяжении, и при сжатии, поэтому возможность обратимой циклической деформации очень большая. В этом случае повреждения накапливаются на поверхности образца с малой степенью сложного напряженного состояния, поэтому легко проявляется влияние атмосферы.  [c.243]

При оценке и прогнозировании циклической долговечности дисков возникают некоторые проблемы а) расчетная аппроксимация кривых усталости б) выбор критериев сложного напряженного состояния, позволяющих использовать данные о малоцикловой усталости, полученные при одноосном напряженном состоянии в) учет концентрации напряжений и деформаций г) суммирование повреждения от малоцикловой усталости и ползучести и учет эффектов неизотермичности нагружения д) учет формы цикла при оценке долговечности е) учет рассеяния характеристик малоцикловой усталости при прогнозировании долговечности диска. Несмотря на то, что в последнее время экспериментальные данные по малоцикловой усталости интенсивно накапливаются, количество их остается ограниченным. Необходимость знать соотношения между напряжениями и деформациями и числами циклов до разрушения в широком диапазоне температур и уровней напряжений (деформаций) в расчетных точках делает целесообразным аналитическое описание усталостных кривых.  [c.135]

При определении предельных усилий, т. е. несущей способности элементов конструкций, используют характеристики сопротивления материалов пластическим деформациям (пределы текучести или ползучести). и разрушению (пределы прочности, критические деформации или глубины трещин, число циклов или время, необходимое для образования трещин). Для сложных напряженных состояний используют условия пластичности или ползучести, а также критерии прочности (применительно к статическому или циклическому нагружению).  [c.7]

Остановимся на формуле суммирования повреждений (3.37), которая получена на основе силовой модели длительного разрушения. Эту формулу обычно применяют для оценки долговечностей при ползучести [10, 18, 39] причем в условиях сложного напряженного состояния в числитель каждой дроби должно войти приращение величины е на й-й ступени деформирования. Принципиальных трудностей вычисление этих приращений не вызывает, так как формула (2.49) или (2.50) позволяет определять приращения компонентов вязкопластических деформаций eT ) на любой ступени нагружения, после чего для этой ступени находится модуль приращения вектора R,, определяемого согласно (2.20). Эта величина, умноженная на i/ 2/3, и составит в соответствии с выражением (2.28) приращение инварианта Одквиста el на данной ступени нагружения.  [c.92]


Некоторые авторы [4], [6] заметили определенную взаимосвязь между видом напряженного состояния и механической прочностью полиэтилена. Таким образом, интенсивность ползучести и разрушения материала при линейном или сложном напряженном состоянии очевидно будет различной.  [c.132]

Сталь перед сваркой подвергают термической обработке на высокую прочность (нормализация или закалка с высоким отпуском). После сварки предусматривается отпуск для снятия напряжений и выравнивания механических свойств в различных участках соединений. К сварным соединениям предъявляется требование равнопрочности с основным металлом в сочетании с определенными значениями ударной вязкости, пластичности и ряда специальных свойств, характеризующих работоспособность соединений в соответствующих условиях (например, критическая температура хрупкости и сопротивление хрупкому разрушению в условиях ударных или статических нагрузок при низких температурах пределы длительной прочности и ползучести сопротивление локальному разрушению при повышенных температурах и сложном напряженном состоянии и т. д.).  [c.42]

Корпуса современных энергетических установок [1—3] представляют собой ответственные и сложные конструкции, к надежной работе которых предъявляются специальные требования. В соответствии с нормами [4] оценка их прочности проводится по таким предельным состояниям, как пластическая деформация или деформация ползучести по всему сечению, появление макротрещин при циклическом нагружении, разрушение (вязкое и хрупкое) и др. При проведении поверочного расчета, позволяющего уточнить геометрическую форму конструкции и определить допускаемое число циклов нагружения и ресурс эксплуатации. Напряжения рассчитываются, как правило, в предположении упругого поведения материалов и в том случае, если они по расчету превышают предел текучести материала местные напряжения и деформации в зонах концентрации в упругопластической области определяются через номинальные и местные в упругой области. При этом для удобства выполнения расчетов, принятых в инженерной практике, вместо упруго-пластических деформаций рассматриваются условные упругие напряжения, равные произведению этих деформаций на модуль упругости [4].  [c.75]

Для многих отраслей техники характерны конструкции, работающие в условиях интенсивных тепловых и силовых воздействий. Работоспособность и долговечность таких теплонапряженных конструкций зависят от взаимосвязанных факторов, которые являются предметом изучения различных разделов механики теорий теплопроводности, термоупругости, пластичности и ползучести, механики разрушения и др. Однако особенности работы теплонапряженных конструкций требуют, как правило, совместного рассмотрения упомянутых разделов механики и их изложения с единых позиций. Такой путь позволяет инженеру-расчетчику ориентироваться во взаимосвязанных вопросах и квалифицированно подойти к решению достаточно сложных прикладных задач термопрочности. К таким вопросам прежде всего следует отнести постановку, методы и алгоритмы решения задач по определению температурного и напряженно-деформированного состояний элементов конструкций с учетом неупругого поведения материалов при переменных режимах тепловых й силовых воздействий с целью оценки работоспособности и долговечности теплонапряженных конструкций.  [c.5]

Голубовский Е. Р. Исследование закономерностей разрушения стали в условиях ползучести при сложном напряженном состоянии Автореф. дис.. .. канд. техн. наук (ЦНИИТМАШ) М., 1975.  [c.268]

Соответствие поведения материалов в условиях ползучести при сложном напряженном состоянии тому или иному критерию разрушения зависит от особенностей накопления деформации ползучести на третьем участке кривой и характера треш,инообразования. В случае, если разрушению предшествует накопление значительной деформации, то разрушение, как и ползучесть, определяется интенсивностью напряжений оГ или максимальными касательными напряжениями. В случае образования большого числа трещин перед разрушением и относительно. хрупкого излома за критерий разрушения может быть принято максимальное главное напряжение [34].  [c.30]

При оценке долговечности конструкций при сложном напряженном состоянии необходимо располагать данными о полях деформаций, фронтах развитля повреждений от нормальных и касательных напряжений. Условие max е, шь iD2 =le Ul] позволяет при этом определить место начального разрушения. Так, при испытаниях образцов с надрезом в условиях вязкого разрушения трещины берут начало у дна выточки. В области образования клиновидных трещин начало разрушения совпадает с областью максимальных нормальных напряжений при ползучести, несколько удаленной от дна выточки, В области хрупких разрушений путем образования микропор начальная трещина также образуется у дна выточки. Смешанному разрушению соответствуют промежуточные значения радиуса между дном выточки и точкой максимальных нормальных напряжений. При этом общая картина изменения пластической деформации сохраняется. На рис. 2.1 показана зависимость пластической деформации образцов со спиральным надрезом от температуры испытания в условиях заданной номинальной скорости ползучести. Уменьшение деформации пластичности с температурой связано с переходом к хрупкому разрушению с образованием клиновидных трещин, повышение пластичности при дальнейшем увеличении температуры бус-ловлено переходом к разрушению путем образования микропор на. границах зерен.  [c.24]


Проведенные экспериментальные исследования длительной прочности при сложном напряженном состоянии позволяют определить время до разрушения изделий различной формы в условиях сложного и неоднородного напряженного состояния. Обычный подход состоит в том, что на основе какой-либо теории ползучести находится величина наибольшего нормального напряжения, которая сопоставляется с кривой длительной прочности, найденной в результате эксперимента. По кривой длительной прочности назсодится время до разрушения. Такой способ носит, очевидно, условный характер, так как совершенно не принимается во внимание треш ино-образование. При расчетах по теории старения это учитывается лишь частично.  [c.432]

Вопросы длительной прочности композиционных материалов по сравнению с ползучестью изучены к настоящему времени значительно меньше. Это объясняется тем, что на композиционные материалы трудно переносить некоторые известные теории, разработанные для однородных материалов. Например, для армированных материалов неясен физический смысл коэффициентов, входящих в формулу С. Н. ЖуркЬва (4.1). Не всегда можно распространить на материалы типа стеклопластиков физические теории хрупкого, вязкого или смешанного разрушения, предложенные, например, в работе [67]. Длительная прочность композиционных материалов мало исследована даже при простейших деформациях. Особенно труден этот вопрос при наличии сложного напряженного состояния, причем это в одинаковой мере относится и к теоретическим, и к экспериментальным исследованиям.  [c.137]

Изучение физической природы разрушения при ползучести в широком диапазоне изменения напряжения, скорости процесса температуры и времени показывает, что для длительных процессов высокотемпературной ползучести, когда упрочнением можно пренебречь, достаточно ограничиться двумя структурнйми параметрами 0)1 и 0)2, отражающими накопление повреждаемостей соответственно от максимальных нормальных напряжений (клиновидные трещины на стыках границ зерен) и максимальных касательных напряжений (микропоры на границах зерен). Два вида накопления микроповреждаемости от действия нормальных и касательных напряжений отражают дуализм микроповреждаемости при ползучести и позволяют повысить точность описания процесса деформирования и разрушения на большой временной базе как при статическом нагружении в условиях растяжения, так и при сложном напряженном состоянии и знакопеременном нагружении.  [c.22]

При взаимодействии микромеханизмов разрушения в области хрупких межзеренных разрушений в логарифмических координатах зависимость длительной прочности не может быть аппроксимирована прямой линией. Это обстоятельство весьма важно при экстраполяции результатов испытаний на большие сроки службы особенно в условиях сложного напряженного состояния, когда переход к хрупкому разрушению происходит при малом времени до р азруше-ния. Только при 8 = п возможна линейная экстраполяция при этом соблюдается принцип Ковпака геометрического подобия кривых длительной прочности. Согласно (2.7) погрешности экстраполяции существенно увеличиваются с уменьшением напряжений, т, е. с увеличением временного интервала экстраполяции. Очевидно, для подтверждения справедливости линейной экстраполяции на большие сроки необходимы дополнительные результаты испытаний, например на ползучесть при одноосном сжатии.  [c.30]

Ползучесть бетона при кручении, изгибе и сложном напряженном состоянии. Специальные исследования ползучести бетона при кручении проведенные В. В. Блинковым (1955), К. С. Карапетяном (1962) и А. М. Скудрой (1959), установили, что связь между напряжениями и деформациями ползучести бетона при кручении и осевом растяжении линейна почти до его разрушения.  [c.163]

В процессе длительного статического нагружения в результате-действия высокой температуры и накопления деформаций ползучести в большинстве конструкционных материалов, особенно в жаропрочных никелевых сплавах, являющихся метастабильными, происходят структурные изменения, связанные с выпаданием, коагуляцией и растворением упрочняющих фаз, в результате чего изме-HHef H соотношение между прочностью зерен и их границ, происходит охрупчивание материала, изменяется тип разрушения. При-наличии указанных изменений в механизме разрушения, трудно ожидать, что критерий длительного разрушения при сложном напряженном состоянии окажется независимым от температурно-временного диапазона испытаний и свойственных ему изменений в структуре и особенностях разрушения материала. Большая серия опытов Джонсона, проведенных при сочетании растяжения с кручением на молибденовой стали при Г=500°С, меди при 7 = 250°С  [c.12]


Смотреть страницы где упоминается термин Разрушение при ползучести при сложном напряженном состоянии : [c.79]    [c.182]    [c.69]   
Смотреть главы в:

Теория высокотемпературной прочности материалов  -> Разрушение при ползучести при сложном напряженном состоянии



ПОИСК



Ползучесть в сложном напряженном состоянии

Ползучесть при сложном напряженном состояни

Разрушение при ползучести

Разрушение сложное

Сложное напряженное состояние

Состояние разрушения



© 2025 Mash-xxl.info Реклама на сайте