Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентные струи несжимаемой жидкости

Основные закономерности распространения дозвуковых турбулентных струй несжимаемой жидкости и газа к последнему времени хорошо изучены как теоретически, так и экспериментально. Это относится к слоям смешения, плоским, осесимметричным и пространственным затопленным струям и струям в спутном потоке. Общепризнанным является деление струи на три участка (рис. 1.1) начальный, переходный и основной [1.1,1.14].  [c.12]

ТУРБУЛЕНТНЫЕ СТРУИ НЕСЖИМАЕМОЙ ЖИДКОСТИ  [c.49]


Таблица 1.10. Основные зависимости для расчета плоских и осесимметричных свободных турбулентных струй несжимаемой жидкости Таблица 1.10. <a href="/info/166985">Основные зависимости</a> для <a href="/info/129003">расчета плоских</a> и осесимметричных <a href="/info/223407">свободных турбулентных струй</a> несжимаемой жидкости
В случае турбулентной струи несжимаемой жидкости уравнения струйного пограничного слоя можно записать в обобщенном виде [9]  [c.83]

Приближенные схемы и основные расчетные зависимости для затопленной свободной турбулентной струи несжимаемой жидкости. Согласно опытам, уже на небольшом расстоянии от начального сечения в струйном пограничном слое профили продольной скорости приобретают форму, характерную для автомодельного течения. Поэтому в практических приложениях часто вместо полной схемы струи с тремя участками, используется упрощенная схема (рис. 22, б). В этой схеме исключается из рассмотрения переходной участок. При этом вместо двух ограничивающих его сечений рассматривается одно, называемое переходным. Границы пограничного слоя принимаются линейными. Продолжив внешние границы струи на основном участке до пересечения с ее осью, получаем в точке О пересечения полюс основного участка струи.  [c.85]

Принимая, что трение среды на границах между соседними полосами шириною 2Во отсутствует, давление в поперечном направлении к потоку постоянно и после слияния струй до сечения Хи2 в плоскости ху при 2 = 0 расход среды постоянен и турбулентное течение несжимаемой жидкости в полосе 2So при стационарности процесса может быть описано следующей системой уравнений  [c.341]

Общая схема свободной затопленной струи несжимаемой жидкости. Струя-источник. Жидкость, поступая из отверстия в покоящуюся среду, за счет действия сил вязкости (при ламинарном режиме течения) или наличия поперечных пульсаций скорости (при турбулентном истечении) вовлекает в движение (эжектирует) частицы среды. В результате образуется затопленная струя, состоящая из струи постоянной массы, расход которой равен расходу. вытекающему из отверстия, а также из вовлеченных в движение массы жидкости. Вследствие эжекции масса струи и ее ширина по мере удаления от начального сечения возрастают. Струя постоянной массы, вовлекая в движение частицы окружающей жидкости, передает им часть собственного импульса. Поэтому скорости струи с удалением от начального сечения уменьшаются. Суммарный импульс же струи в различных ее сечениях практически остается постоянны. . Статическое давление в разных точках струи изменяется несущественно и приблизительно равно давлению в окружающем пространстве, т. е. свободную струю можно считать изобарической.  [c.80]


Рассмотрим осесимметричную свободную струю несжимаемой жидкости. В общем случае струя содержит участки и ламинарного и турбулентного течения (см. п. 3, гл. III), на которых распределение скоростей определяется уравнением (194).  [c.176]

ОКОЛО 17 ООО °С, хорошо согласуются между собой, а толщина пограничного слоя плазменной струи получается на 20—30% больше, чем по теоретическому расчету, в котором принято то же значение константы турбулентности, что и в случае струи несжимаемой жидкости (а = 0,09).  [c.822]

Рассмотрим элементы теории свободных турбулентных струй. Будем считать жидкость (газ) в струе и в среде вязкой и несжимаемой, а распределение осреднен-ных скоростей на выходе струи из отверстия или насадка равномерным. Первое условие полностью удовлетворяется в расчетах систем вентиляции промышленных и гражданских зданий второе — при устройстве плавно сходящихся насадков.  [c.327]

Принимаем следующие допущения 1) движение жидкости является установившимся и турбулентным, а жидкость в застойной зоне не участвует в главном движении 2) приравниваем нулю объемную силу веса ввиду ее малости 3) пренебрегаем влиянием торцовых стенок на угол отклонения результирующей струи 4) жидкость считаем несжимаемой  [c.292]

Для движения несжимаемой жидкости динамическая и тепловая задачи решаются раздельно, при этом решение первой из них—динамической—используется при решении второй--тепловой. Напомним, что теория Прандтля переноса количества движения приводит к совпадению относительных профилей избыточной температуры и скорости в задачах о свободных струях или о турбулентном следе за телом (при подобии граничных условий для скорости и температуры [Л. 1]). Формально этот результат отвечает равенству единице так называемого турбулентного числа Прандтля  [c.82]

Таким образом, истечение струи рабочей жидкости из струйной трубки может происходить в среду с меньшей плотностью (в атмосферу) или главным образом в среду с равной плотностью (в рабочую жидкость). Струя несжимаемой рабочей жидкости, движущаяся в среде меньшей плотности, называется свободной незатопленной струей. Такая струя, двигаясь в воздухе, нарушает свою компактность, дробится на отдельные струйки, в которых содержится воздух. Струя несжимаемой рабочей жидкости, движущаяся в среде равной плотности, называется свободной затопленной струей. Такая струя, двигаясь в жидкости, не распадается на отдельные струйки. Однако в турбулентной затопленной струе, кроме осевого движения частиц, существует еще и поперечное их движение. Из-за этого между струей и окружающей ее средой происходит обмен частицами через пограничный слой, вызывающий увеличение массы движущегося потока и постепенное уменьшение скорости струи. На рис. 5.20 изображена структура свободной затопленной струи. Можно заметить, что процесс обмена масс не сразу охватывает всю струю. В начальном участке струи на-350  [c.350]

В технике большое значение имеет теплообмен при больших числах Re. В связи с этим в гидродинамике и теплообмене вязкой жидкости важное место занимает теория пограничного слоя. В настоящее время методы пограничного слоя хорошо разработаны для несжимаемой жидкости и сжимаемого газа. Получены решения ряда задач о теплообмене и гидравлическом сопротивлении при ламинарном и турбулентном течении жидкости в трубах и соплах, задач о распределении скорости и температуры в неизотермических струях и ряда других задач. Наибольшее (распространение методы пограничного слоя получили при решении задач теплообмена и сопротивления при внешнем (безотрывном) обтекании тел.  [c.11]

При моделировании плоских и круглых турбулентных струй методом дискретных вихрей рассматривается случай идеальной несжимаемой жидкости. Применительно к плоским струям при этом могут быть использованы два подхода. В первом из них граничные условия непротекания на  [c.158]

В предшествующих параграфах рассматривались те случаи установившихся турбулентных движений вязкой несжимаемой жидкости, которые имеют место при наличии твёрдых стенок. Однако в природе и технике встречаются случаи установившихся турбулентных движений жидкостей и газов без ограничивающего влияния твёрдых границ и без наличия продольных перепадов движения. Характерными примерами таких движений могут служить 1) движение частиц жидкости в струе, вытекающей из какого-либо резервуара в пространство, занятое той же самой жидкостью, но находящейся в покое на достаточном удалении от отверстия, 2) движение жидкости позади выпуклого тела на достаточном от него удалении при обтекании этого тела безграничным потоком, т. е. движение в так называемом следе за обтекаемым телом. Эти два случая свободных турбулентных движений имеют общие черты, заключающиеся в том, что внешняя граница, отделяющая область турбулентного движения жидкости от остальной части жидкости, постепенно расширяется по мере удаления в случае струи от отверстия, а в случае следа—от обтекаемого тела, и в том, что распределение основных скоростей по сечениям, перпендикулярным к основному направлению течения в струе  [c.493]


При движении жидкости с переменным расходом в дырчатых трубах в ней возникают вихри, которые обусловлены турбулентными струями, входящими в жидкость или выходящими из нее. Эти вихри оказывают дополнительное сопротивление поступательному движению основной массы жидкости. Потери напора на вихревые сопротивления, как указывает И. М. Коновалов, могут быть довольно значительными, во много раз превышающими обычные потери на внутреннее трение при движении вязкой несжимаемой жидкости. Однако эти потери напора чаще всего совсем не учитываются при расчете дырчатых распределителей и сборников воды, что не дает возможности более точно определить их пропускную способность и степень равномерности распределения и сбора воды по площади сооружений.  [c.14]

Свободная затопленная струя, вытекающая из круглого отверстия или плоской щели. Внешний вид струи хорошо наблюдается в виде клубов дыма, выходящих из трубы в безветренную погоду. Будем считать жидкость несжимаемой (для вентиляционных струй это условие выполняется полностью), а режим течения — турбулентным.  [c.259]

Далее полагаем 1) жидкость несжимаема 2) давление питания Рд постоянно 3) наибольшее давление в камере после золотника мало по сравнению с Р , так что расход д зависит только от Р, и от величины открытия рабочей щели золотника х 4) утечки, помимо золотника, пренебрежимо малы 5) размеры камеры на выходе золотника достаточно велики, чтобы струя, вытекающая из рабочей щели, вырождалась в турбулентный поток с однородным давлением Рд, которое принимается равным давлению в канале А — О.  [c.257]

Укажем еш е некоторые из многочисленных отдельных журнальных статей Г. Л. Гродзовский, Решение осесимметричных задач свободной турбулентности по теории турбулентной диффузии, Прикл. матем. и мех. 14, в. 4, 19 50 О. Н. Б у ш м а-р и н. Турбулентная осесимметричная струя несжимаемой жидкости, вытекающая в спут-  [c.572]

Укажем еще некоторые из многочисленных отдельных журнальных статей Г. В. Гродзовский, Решение осесимметричных задач свободной турбулентности по теории турбулентной диффузии, Прикл. матем. и мех., т. XIV, в. 4, 1950 О. Н. Б у ш-марин. Турбулентная осесимметричная струя несжимаемой жидкости, вытекающая в спутный однородный поток той же жидкости, Труды ЛПИ, Энергомашиностроение, Техническая гидромеханика, № 5, 1953, 15—23 и того же автора Закрученная струя в спутном потоке жидкости той же плотности в Трудах ЛПИ, Я 176, 1955 Л. Г. Лойцянский, К теории плоских ламинарных и турбулентных струй. Труды ЛПИ, № 176, 1955 А. С. Гиневский, Турбулентный след и струя в спутном потоке при наличии продольного градиента давления, Изв. АН СССР, Механика, Машиностроение , № 2, 1959 а также Приближенные уравнения движения в задачах теории турбулентных струй , там же, № 5, 1963 и большое число работ Л. А. В у л и с а и его сотрудников как в только что указанной монографии, так и в сб. Исследование физически.х основ рабочего процесса топок и печей , Алма-Ата, 1956.  [c.718]

На основе такого подхода были рассчитаны турбулентные струи и следы в несжимаемой жидкости при наличии одночастотного и двухчастотного периодического возбуждения [6.16,6.17,6.19,6.20,6.22]. При этом использовалось приближение пограничного слоя, струя полагалась изобари-  [c.167]

Турбулентные струи и следы нестратифмцированной несжимаемой жидкости  [c.199]

Не следует забывать, что еще в недалеком прошлом шла дискуссия по вопросу о том, равняется ли нулю скорость реальной жидкости иа поверхности обтекаемого ею тела или нет. Жуковский и Прандип. первые решительно встали на точку зрения прилипания жидкости к стенке правильность этого воззрения, лежащего в основе теории пограничного слоя, в дальнейшем была подтверждена многочисленными опытами. Работы советских ученых в области теории ламинарного и турбулентного пограничного слоя, а также по общей теории турбулентности представляют исключительный интерес работы Л. Е. Калих- мана, Л. Г. Лойцянского, А. П. Мельникова и К. К. Федяевского ио плоскому и пространственному, ламинарному и турбужнтному пограничному слою в несжимаемой жидкости, относящиеся к периоду 1930—1945 гг., замечательные исследования А. А. Дородницына 1939—1940 гг. по теории пограничного слоя в сжимаемом газе, практические методы расчета турбулентных струй, указанные Г. И. Абрамовичем, и другие результаты советских ученых оставили далеко позади зарубежные исследования в этой области. Все практические расчеты пограничного слоя, необходимые для определения профильного сопротивления крыла и фюзеляжа самолета, сопротивления корпуса корабля, потерь энергии в лопастных аппаратах турбомашин, а также расчеты различных струйных механизмов (эжекторов и др.) ведутся у нас в Союзе по методам, принадлежащим советским ученым.  [c.37]

Простым и хорошо согласующимся с опытными данными является метод расчета турбулентного пограничного слоя в несжимаемой жидкости, предложенный М. Р. Хэдом [Л. 124]. Для вывода вспомогательного уравнения допускается, что развитие пограничного слоя не зависит от числа Рейнольдса, а количество жидкости на единицу обтекаемой поверхности, увлекаемое из невоз-мущешного потока в пограничный слой, зависит от толщины пограничного слоя, скорости на внешней границе слоя и ее распределения по обтекаемой поверхпости. Допущение о незав-исимости распространения пограничного слоя от числа Рейнольдса обосновывается тем, что развитие турбулентного пограничного слоя можно уподобить развитию области смешения турбулентных свободных струй и следов, не зависящему от числа Рейнольдса.  [c.400]


В. И. Бакулева (при таком же значении константы турбулентности, как в несжимаемой жидкости) экспериментальные и теоретические профили скоростного напора и температуры в поперечных сечениях и вдоль оси соответственно близки мажду собой (при значении турбулентного числа Прандтля Рг =0,87). Исходя из этих экспериментов, можно сделать вывод, что при закритических ДЕСвлениях струя жидкого азота распространяется в газообразном азоте как газовая струя (без образования капель).  [c.822]

Для оценки распределителей Я. Т. Ненько ввел некоторый критерий длины, определенный в предположении одноразмерного установившегося движения вязкой несжимаемой жидкости с непрерывно убывающим вдоль пути расходом. Г. А. Петров уточнил выражение критерия длины распределителей круглого сечения, введя в него коэффициент кинетической энергии учитывающий влияние эпюры скоростей в начальном живом сечении потока. Однако этим не исчерпываются все особенности движения реального потока в дырчатых распределителях. Как уже указывалось, на потери пьезометрического напора по длине дырчатых распределителей оказывают влияние также прерывчатый отток струй через отверстия, убывание расхода вдоль пути потока и возникновение в нем вихревых сопротивлений, обусловленных взаимодействием транзитного потока с вытекающими турбулентными струями.  [c.40]

Технологические жидкости являются однофазными или смесью, состоящей из двух, реже из трех фаз. Во всех случаях сплошной средой является жидкость, а дисперсной фазой — твердые частицы, несмешиваемая жидкость или газовые пузырьки. Любая комбинация дисперсных фаз внесет свои особенности в определение величин сопротивления перемещаемым в них деталям. Присутствие посторонних включений в сплошной среде исказит картину распределения скоростей в слоях, которая бывает в однофазной жидкости, так как взвешенные частицы искривляют пути движения отдельных частиц жидкости и вызывают некоторое перемешивание слоев. При этом происходит более быстрый переход ламинарного движения к турбулентному. Однако и до перехода к турбулентному режиму присутствие взвешенных частиц влияет на сопротивление течению лодкости. Твердые частицы сужают пространство, занятое струями жидкости, и увеличивают средний градиент скорости в поперечном сечении потока, а вместе с этим и градиентные силы трения. Но общая закономерность течения тех нологической жидкости не изменится. Поэтому все технологиче ские жидкости будем рассматривать как вязкие несжимаемые и при решении задач использовать метод, применяемый в механике однофазных жидкостей. Все особенности характеристик технологических жидкостей, существенно влияющие на механику движения [121 деталей, следует учитывать эквивалентными коэффициентами приведения (рис. 188).  [c.206]


Смотреть страницы где упоминается термин Турбулентные струи несжимаемой жидкости : [c.329]    [c.380]    [c.378]    [c.24]   
Смотреть главы в:

Теоретические основы теплотехники Теплотехнический эксперимент Книга2  -> Турбулентные струи несжимаемой жидкости



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Жидкость несжимаемая

Струя

Струя турбулентная

Турбулентные струи и следы неПостроение кривых свободной по- стратифицированной несжимаемой верхности потока с помощью ЭВМ 119 жидкости



© 2025 Mash-xxl.info Реклама на сайте