Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диаграмма растяжения и механические характеристики

Диаграмма растяжения и механические характеристики  [c.95]

Попытки найти однозначную связь между характеристиками механических свойств металлов, определяемых по диаграмме растяжения, и пределом выносливости не дали существенных результатов. Сравнение пределов выносливости металлов и соответствующих им пределов прочности и других характеристик механических свойств показывает, что отсутствует однозначная связь между этими величинами. Несоответствие увеличивается с повышением предела прочности металла, наличием концентрации напряжений, воздействием коррозионных сред и т. п.  [c.12]


На рис. 11.14 представлено несколько диаграмм растяжения малоуглеродистой стали (0,15% С) при разных температурах, а на рис. И. 15 и 11.16 — графики зависимости упругих постоянных (Л и р,) и механических характеристик (Оц, и Од), а также ф и 6 от температуры для той же стали.  [c.35]

Уравнение легко решить графически (см. схему на рис. 159, е). На рабочем чертеже пружины помещают диаграмму механической характеристики пружины, по которой производится контроль пружины. На этой диаграмме для пружины сжатия и растяжения показывают зависимость между нагрузкой Р и осевой деформацией Н.  [c.218]

Работа деформации. Кроме названных уже характеристик механических свойств материала диаграмма растяжения дает возможность определить еще и энергетические его характеристики.  [c.97]

Для определения механических характеристик на практике используют условные диаграммы растяжения в координатах о — е. Построение диаграмм истинных напряжений значительно сложнее, и служат они главным образом целям теоретических исследований.  [c.100]

Целью испытания на растяжение является определение механических характеристик материала. При испытании автоматически записывается диаграмма зависимости между растягивающей образец силой Р и удлинением образца А/. По очертанию она похожа на диаграмму, представленную на рис. 11.8.  [c.31]

Прежде, когда изучение механики деформируемых тел находилось еще в начальной стадии, так обычно и поступали. В дальнейшем, однако, было установлено, что характеристики сдвига связаны с характеристиками растяжения. В настоящее время теория пластичности (см. ниже, гл. XII) дает возможность построить теоретически диаграмму сдвига по диаграмме растяжения, а также выразить все характеристики сдвига через уже знакомые нам механические характеристики растяжения. Точно так же допускаемые напряжения и коэффициенты запаса при чистом сдвиге могут быть связаны с соответствующими величинами для простого растяжения. Эти вопросы будут подробно рассмотрены в гл. XII.  [c.81]

Форма огибающей предельных кругов Мора зависит от свойств материала и является его механической характеристикой, такой же, как, например, диаграмма растяжения. Если огибающая предельных кругов для материала дана, можно при любом заданном напряженном  [c.266]

Диаграмма растяжения содержит гораздо больше информации о свойствах материала, чем определяется по ГОСТу 1497 и др. При оценке механических характеристик металла при диагностировании аппарата и в исследовательских работах эта информация должна извлекаться по возможности более полно. Это дает ряд тонких характеристик материала, реагирующих на такие изменения в структуре, которые, не меняя стандартных, параметров (а , Og, й, v /), сказываются, например, на склонности к хрупкому разрушению, усталостной прочности и т.п.  [c.284]


Чтобы получить механические характеристики материала, диаграмму, снятую при испытании образца, нужно перестроить в условную диаграмму растяжения в координатах (е, а), не зависящих от абсолютных размеров образца (рис. 2.21). Для этого все ординаты и абсциссы на диаграмме в координатах (А/, К) (см. рис. 2.20) необходимо разделить соответственно на начальную расчетную длину 1а и начальную площадь поперечного сечения Ло образца (рис. 2.22, а).  [c.168]

Некоторые пластичные материалы (например, среднеуглеродистая сталь, дюралюминий) дают при испытании на растяжение диаграмму, не имеющую площадки текучести. Для таких материалов вводят понятие об условном пределе текучести как о напряжении, при котором остаточная пластическая деформация составляет 0,2%, это напряжение (механическую характеристику материала) обозначают (в специальной и в справочной литературе зачастую обозначения физического и условного предела текучести не разграничивают, применяя общее обозначение о ).  [c.330]

Часто встречаются и имеют большое практическое значение случаи сочетания основных деформаций, когда в поперечных сечениях возникают и нормальные и касательные напряжения, распределенные неравномерно и по разным законам. Для таких случаев опытное определение величин, характеризующих прочность, невозможно, поэтому при оценке прочности детали приходится основываться на механических характеристиках данного материала, полученных из диаграммы растяжения.  [c.270]

Диаграмма растяжения позволяет определять не только механические или прочностные, но и энергетические характеристики материала. Величина площади диаграммы есть работа, которую затрачивают на разрыв образца.  [c.56]

Аналогичным образом для сдвига, как и для растяжения, можно было бы дополнительно ввести следующие характеристики предел пропорциональности при сдвиге, предел упругости, предел текучести и т.д. Прежде, когда изучение механики деформируемых тел находилось еще в начальной стадии, так обычно и поступали. В дальнейшем, однако, было установлено, что характеристики сдвига связаны с характеристиками растяжения. В настоящее время теория пластичности дает возможность построить теоретически диаграмму сдвига по диаграмме растяжения, а также выразить все характеристики сдвига через уже знакомые нам механические характеристики растяжения. Точно так же допускаемые напряжения и коэффициенты запаса при чистом сдвиге могут быть связаны с соответствующими величинами для простого растяжения. Эти вопросы будут подробно рассмотрены в гл. 10.  [c.108]

Форма огибающей предельных кругов Мора зависит от свойств материала и является его механической характеристикой, такой же, как, например, диаграмма растяжения. Если огибающая предельных кругов для материала дана, можно при любом заданном напряженном состоянии определить коэффициент запаса. Для этого надо по заданным напряжениям вычертить наибольший из трех кругов Мора, а затем, хотя бы графически, установить, во сколько раз следует увеличить а и аз, чтобы увеличенный круг касался предельной огибающей.  [c.355]

При сжатии образца из малоуглеродистой (пластичной) стали диаграмма сжатия имеет следующий вид (рис. 2.13), Поскольку начальная часть диаграммы почти совпадает с диаграммой растяжения, принято считать, что механические характеристики пластичной стали при растяжении (пределы пропорциональности, упругости, текучести, прочности, модуль упругости) являются и характеристиками при сжатии.  [c.38]

Форма огибающей предельных кругов Мора зависит от свойств материала и является его механической характеристикой, такой же, как, например, диаграмма растяжения.  [c.301]

Однако диаграмма растяжения в координатах Р, А1 зависит от размеров испытуемого образца, его длины и площади поперечного сечения. Для получения механических характеристик материала эту диаграмму перестраивают в систему координат а, . Напряжение а = P/Fo, где Fо - площадь поперечного сечения образца до испытания продольная деформация е = Д///о, где 1о - длина расчетного участка образца до испытания. Так как величины Fq и 1о постоянны, диаграмма а = /(е) имеет тот же вид, что и Р=/(Д/) и отличается от нее масштабами. Диаграмма ст = = / (s) характеризует свойства испытуемого материала и носит название диаграммы растяжения.  [c.146]


Следует отметить, что полностью избавиться от упругой деформации элементов машины не представляется возможным. Ее вклад будет тем больше, чем выше сопротивление образца пластической деформации, поэтому необходимо учитывать жесткость системы машина — образец при точном определении механических характеристик металла. Например, для уменьшения влияния жесткости машины на погрешность определения удлинения образца по диаграмме растяжения используют датчик удлинения, укрепленный на образце и фиксирующий изменение длины только расчетной части образца.  [c.33]

Как видим, свойства среды могут быть схематизированы -различным образом в зависимости от свойств реального материала и тех задач, которые ставит перед собой исследователь. Существенно отметить, что во всех случаях при этом мы отвлекаемся от физических процессов, обусловливающих тот или иной вид диаграммы растяжения. Мы не интересуемся особенностями поведения кристаллической решетки, вопросами развития дислокаций и т. д. Мы фиксируем только внешнюю суммарную сторону этих микропроцессов, проявляющуюся в численных значениях механических характеристик материала и в характере диаграммы растяжения.  [c.16]

Было обнаружено, что, вследствие обратимой адсорбции материалом поверхностно-активных веществ из окружающей среды, облегчается упругая и в особенности пластическая деформация и разрушение материала. Объясняется это явление так. При растяжении монокристалла металла образуются микрощели с радиусом кривизны в вершине порядка нескольких А если при этом деформируемый образец помещен в жидкость с поверхностно-активными веществами, происходит проникновение адсорбционных слоев молекул из жидкости в указанные микрощели. В упругой области микрощели при разгрузке смыкаются. Такое поведение материала проиллюстрировано на рис. 4.39, на котором изображены диаграммы напряжений для монокристалла олова. Малая добавка олеиновой кислоты к вазелиновому маслу снижает все механические характеристики в чистом вазелине свойства олова такие же, как и в воздушной среде. Существует оптимальный процент содержания по-  [c.274]

На диаграмме наносятся механические характеристики материала истинное сопротивление разрушению при растяжении Sji, сопротивление срезу предел текучести и истинный сдвиг. е .чх в процентах.  [c.438]

Для чугуна каждой марки суш.ествуют достаточно стабильные соотношения между различными механическими характеристиками. Так, например, отношение временного сопротивления изгибу к временному сопротивлению разрыву для чугуна СЧ 18-36 равно двум. Отношение временного сопротивления сжатию к временному сопротивлению разрыву равно четырем. Пределы упругости и текучести на диаграмме испытаний не проявляются. Чугун, как известно, не подчиняется закону Гука, и остаточные деформации появляются в них при относительно малых напряжениях. Это объясняется большим количеством графитовых включений. При напряжениях, составляющих 40—50% от временного сопротивления при растяжении, остаточные деформации достигают заметной величины. Диаграмма напряжение — удлинение представляет собой кривую, почти не имеющую прямолинейного участка. Иногда условно принимают величину предела текучести серого чугуна, равную 70% величины временного сопротивления растяжению.  [c.433]

На условной диаграмме растяжения (рис. 3.2) отмечены точки и их ординаты, соответствующие механическим характеристикам, полученным при статических испытаниях иа растяжение малоуглеродистой стали. Характерными точками (напряжениями) диаграммы растяжения являются  [c.95]

Экспериментальное изучение поведения материалов под нагрузкой при линейном растяжении или сжатии на машинах, имеющихся в лабораториях испытания материалов, не встречает затруднений. Полученные в результате экспериментов диаграммы растяжения или сжатия дают наглядное представление о сопротивлении материала упругому и пластическому деформированию и позволяют определить такие важные для оценки прочности и назначения допускаемого напряжения механические характеристики, как предел текучести и предел прочности или временное сопротивление материала.  [c.127]

Механические свойства сталей после различных вариантов упрочняющей обработки для различных температур испытаний приведены в табл. 16—18. На рис. 4 представлена диаграмма растяжения одной из сталей, а на рис. б—8 — их характеристики сопротивления усталостному разрушению в зависимости от вида используемой упрочняющей обработки. Показатели вязкости и трещиностойкости сталей приведены в табл. 19, 20.  [c.25]

Основные механические характеристики сопротивления материала деформации и разрушению модуль Юнга, коэффициент Пуассона, модуль сдвига, предел пропорциональности, предел упругости, а также пределы текучести и прочности — рассчитывают по определенным точкам на диаграмме деформации, например по диаграмме растяжения металлов для условных (1) и истинных (2) напряжений (рис. 29).  [c.87]

Наличие на диаграмме вдавливания таких же характерных точек, как и на диаграмме растяжения, физически оправдывает возможность оценки показателей механических свойств при растяжении по характеристикам твердости.  [c.392]


Диаграмма деформирования ао(ёо) является характеристикой материала и устанавливается экспериментально. Для этого обычно испытывают материал на одноосное растяжение и последующее сжатие. Образцы растягивают до различных значений ёо и затем разгружают. Затем из них вырезают образцы на сжатие таким образом, чтобы сжатие происходило в направлении предшествовавшего растяжения. При испытании на сжатие определяют условный предел текучести оо (обычно при допуске на интенсивность пластической деформации 0,002) Для достаточно точного определения оо рекомендуется производить испытание с использованием механических тензометров Записав согласно уравнениям (1.85) приращение продольной деформации при осевом растяжении вдоль оси Х, получаем  [c.27]

Таким образом, несмотря на то, что влияние п редварительной деформации индивидуально и зависит от сплава и температурно-временнйх условий, для материалов реальных конструкций, работающих при малых упругопластических деформациях (до 0,2—0,5%), возможно принимать кривые ползучести и характеристики длительной прочности, не зависящими от предварительного пластического деформирования, а. мгновенные диаграммы растяжения и характеристики кратковременной прочности, не зависящими от предварительно накопленной деформации ползучести. Большие степени холодных пластических деформаций, возникающие на поврежденных слоях при механической обработке, оказывают значительное влияние на характеристики прочности и пластичности при длительном статическом разрушении. Снижение сопротивления длительному статическому разрушению и способности к пластическому деформированию материала, наклепанного при механической обработке (фрезерование, шлифование абразивом), являются в ряде случаев причиной образования статических трещин в поверхностных слоях деталей, работающих при высоких температурах.  [c.36]

Материал испытали на растя-мсение, получили приведенную справа диаграмму и определили по ней все основные механические характеристики. В конструкции детали из этого материала будут работать как на растяжение, так и на сжатие. Какие дополнительные испытания нужно провести  [c.129]

Для проведения изотермических испытаний при активном нагруншнии с регистрацией диаграмм деформирования и основных механических характеристик статической прочности и пластичности материалов, а также осуществления циклических испытаний при мягком и жестком нагружении с получением диаграмм циклического деформирования и кривых усталости в Институте машиноведения используются установки собственной конструкции растяжения — сжатия механического типа с максимальной гру-зоспособностью 10 тс. Они обладают широким диапазоном скоростей перемещения активного захвата (частота циклического  [c.233]

Анизотропность кристаллов. Вследствие кристаллического строения металлы в пределах зерна или в случае монокристалла в пределах всего тела обладают свойством анизотропности, состоящим в том, что важнейшие механические и физические характеристики являются в каждой точке тела функциями параметров направления. Материал в отношении всех своих механических и физических свойств обладает симметрией, зависящей от симметрии кристаллографической формы. На рис. 4.4 показаны векторные диаграммы (поверхности) коэ(1х зициентов растяжения двух разных кристаллов. В чистом железе модуль упругости ГГодна из с й четвеГтого поряд В направлении пространственной диа-  [c.230]

Комплекс механических свойств стали Г13Л отличается высоким уровнем как прочностных характеристик, так и пластических. Это является результатом упрочнения стали в зонах повышенной деформации, вследствие чего растяжение образцов стали происходит практически без образования шейки, но с появлением большого количества надрывов и трещин. Диаграмма растяжения поэтому сильно отличается от таковой для углеродистых сталей. В частности, отсутствует площадка текучести и предел текучести рассчитывается условно по заданной деформации.  [c.384]

Минимальные гарантируемые механические свойства чугуна определяются по точке Я2, соответствующей наибольшей величине степени эвтектичности чугуна данного состава — 5э = 0,74. Соответствующие ей значения пределов прочности чугуна при растяжении и изгибе будут равны не менее 18 и 36 кГ/мм в толстом сечении, 21 и 40 кПмм в тонком сечении и 24 и 44 кГ/мм в стандартной пробе диаметром 30 мм, отлитой в сухой форме или стержне. При содержании в чугуне менее 1,1% Si эта проба может оказаться отбеленной (см. структурную диаграмму на номограмме). При небольшом отбеле пробы ее прочностные характеристики будут еще в какой-то степени соответствовать расчетным, но стрела прогиба может оказаться уже заниженной в сравнении с данными ГОСТа 1412—54 по марке СЧ 24-44.  [c.27]

Методы неразрушающего безобразцового контроля (БК) механических свойств по характеристикам твердости основаны на взаимосвязи диаграмм вдавливания инденторов и диаграмм растяжения Образцов и позволяют количественно оценить отдельные показатели прочности и пластичности металла без вырезки образцов на готовых изделиях. На методы измерения характеристик твердости переносными приборами и определения прочностных свойств металла разработаны и действуют ГОСТ  [c.333]

Диаграмма растяжения стали. Рассмотрим диаграмму растяжения малоуглеродистой стали марки ВСтЗ, обладающей хорошо выраженными пластическими свойствами и широко применяемой в строительстве. Если испытывать образцы разных размеров, то получим различные диаграммы Р=/(А/)-Для определения обобщенных механических характеристик материала диаграммы строят в координатах напряжение — деформация с =/ (е), которые определяются по формулам  [c.56]

Методы неразрушающего безобразцового контроля (БК) механических свойств по характеристикам твердости основаны на взаимосвязи диаграмм вдавливания и растяжения и позволяют количественно оценивать некоторые показатели прочности и пластичности металла без вырезки образцов на готовых изделиях. Эти методы могут быть реализованы с помощью переносных приборов в цеховых условиях. Имеется положительный опыт использования БК в теплоэнергетике, что дает возможность экономить материалы и трудозатраты, сокращать время контроля металла. При совместном применении НК и БК можно получить достаточно полную информацию о структурно-механическом состоянии металла в целях прогноза остаточного ресурса теплоэнергетического оборудования.  [c.376]

При кратковременных статических испытаниях в условиях комнатной, повышенной и пониженной температуры базовые параметры Е и т можно получить при растяжении (или сжатии) стандартных гладких цилиндрических или плоских образцов с регистрацией диаграммы деформирования при этом необходимо обеспечение погрешностей измерения напряжений на уровне 1 %, а деформаций на уровне 2 %. Вместе с тем действующие стандарты не предусматривают опредаление параметра т (или Е1 ), в связи с этим ниже приведены зависимости между этими параметрами и стандартными характеристиками. механических свойств. При отсутствии прямых экспери-ментальных данных о величинах используют аналогичные связи.  [c.135]



Смотреть страницы где упоминается термин Диаграмма растяжения и механические характеристики : [c.721]    [c.234]    [c.259]    [c.10]    [c.53]   
Смотреть главы в:

Справочник авиационного техника Изд.3  -> Диаграмма растяжения и механические характеристики



ПОИСК



Диаграмма диаграмма характеристик

Диаграмма растяжения

Диаграмма характеристик

Механическая характеристика



© 2025 Mash-xxl.info Реклама на сайте