Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генераторы дуговые

То же, с ламповыми генераторами. Дуговые плавильные печи.....  [c.12]

Сварка выполняется от источника постоянного тока с обратной полярностью. Для этого могут быть использованы обычные сварочные генераторы дуговой сварки. Значительно лучшие результаты дают источники тока с жесткой или возрастающей характеристикой. Чтобы обеспечить работу нормальных сварочных генераторов с такой характеристикой, нужно осуществить некоторую их переделку. Для генераторов ПАС-300 и СУГ-26 эта переделка заключается в изменении направления вращения якоря и переключении питания обмоток возбуждения, а для генераторов ПАС-400 ПАС-500 — в переключении размагничивающей обмотки. Можно также применять генераторы напряжением 24 в, предназначенные для питания гальванических ванн.  [c.206]


Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источники постоянного тока (сварочные выпрямители и генераторы). Источники переменного тока более распространены, так как обладают рядом технико-экономических преимуществ. Сварочные трансформаторы проще в эксплуатации, значительно долговечнее и обладают более высоким КПД, чем выпрямители и генераторы постоянного тока. Однако в некоторых случаях (сварка на малых токах покрытыми электродами и под флюсом) при питании переменным током дуга горит неустойчиво, так как через каждые 0,01 с напряжение и ток дуги проходят через нулевые значения, что приводит к временной деионизации дугового промежутка. Постоянный ток предпочтителен в технологическом отношении при его применении повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку на прямой и обратной полярностях и т. д. Последнее вследствие большего тепловыделения в анодной области дуги позволяет проводить сварку сварочными материалами с тугоплавкими покрытиями и флюсами  [c.188]

Анализ типовых структурных схем передачи энергии при разных сварочных процессах (табл. 1.3) позволяет обосновать предлагаемую выше классификацию. Например, при дуговой сварке электрическая энергия ЭЛ из сети проходит следующий путь трансформируется в сварочном трансформаторе или генераторе для получения нужных параметров тока и напряжения  [c.24]

Рис. 1. Электрическая схема генератора дуги переменного тока / — трансформатор 220/3000 В 2 — высокочастотный повышающий трансформатор 3 — вспомогательный разрядный промежуток 4 — дуговой промежуток 5 и 6 — реостаты, регулирующие силу тока в цепи трансформатора /ив дуговом разряде 7 — конденсатор С 0,003 мкФ 8 — конденсатор С 0,5 мкФ 9—амперметр 10 — кнопка включения Рис. 1. <a href="/info/4765">Электрическая схема</a> генератора <a href="/info/672621">дуги переменного тока</a> / — трансформатор 220/3000 В 2 — высокочастотный повышающий трансформатор 3 — вспомогательный разрядный промежуток 4 — <a href="/info/344552">дуговой промежуток</a> 5 и 6 — реостаты, регулирующие <a href="/info/279416">силу тока</a> в цепи трансформатора /ив <a href="/info/12693">дуговом разряде</a> 7 — конденсатор С 0,003 мкФ 8 — конденсатор С 0,5 мкФ 9—амперметр 10 — кнопка включения
Во всех трех лабораторных работах, относящихся к настоящему разделу практикума, в качестве источника света применяется дуга переменного тока как наиболее удобный и безопасный способ возбуждения спектра в условиях учебной лаборатории. На рис. 1 приведена принципиальная электрическая схема генератора для возбуждения дугового разряда переменного тока.  [c.8]


Дуговой разряд возбуждается с помощью генератора активизированной дуги переменного тока. Принципиальная электрическая схема генератора приведена на рис. 1. При включении кнопки /(9 напряжение на концах вторичной обмотки высоковольтного трансформатора 1 (3 кВ) оказывается больше пробивного напряжения вспомогательного разрядника 3. В результате его пробоя конденсатор 7 ( i 0,003 мкФ) разряжается на первичную катушку высокочастотного трансформатора 2. Со вторичной катушки этого трансформатора напряжение (30 кВ) высокой частоты попадает на электроды дуги. Промежуток 4 между ними периодически (с частотой 50—100 с ) пробивается — активизируется к прохождению через него переменного тока электрической сети. Сила тока в дуге регулируется реостатом 6 и контролируется амперметром 9. При выполнении задачи она устанавливается равной 4— 5 А.  [c.34]

Спектрограф ИСП-22 не имеет специального затвора, поэтому экспонировать рабочую фотопластинку нужно либо путем включения и выключения дугового генератора, либо при помощи крышки щели. Ни в коем случае нельзя использовать для этого шторку кассеты, так как может произойти смещение спектров.  [c.35]

Перед началом работы угольные электроды с помощью напильника должны быть заточены в виде клина с углом 20—30° и с площадкой у острия шириной I мм. Эту площадку по длине ориентируют вдоль оптической оси. Рабочие поверхности стальных образцов и эталонов зачищают наждачной бумагой или на наждачном круге. Возбуждение спектров производится в дуге переменного тока, питаемой от дугового генератора ПС-39 или ДГ-2 при силе тока 5 А.  [c.46]

Описание установки. Основные линии алюминия лежат в ультрафиолетовой части спектра. Поэтому для фотографирования его спектра в задаче используется кварцевый спектрограф ИСП-22 (ИСП-28, ИСП-30). В качестве источника света применяется дуга переменного тока, питание которой осуществляется стандартным дуговым генератором типа ПС-39 или ДГ-2. Экспериментальная установка практически полностью совпадает с той, на которой выполняется задача 2. Поэтому ее подробное описание здесь не приводится.  [c.64]

Стилоскоп СЛ-11 является стационарным прибором. В комплект входит дуговой генератор, который устанавливается под спектральным аппаратом. Контролируемая деталь является верхним электродом. В качестве нижнего электрода используются прутки из электролитической меди диаметром от 8 до 12 мм.  [c.109]

Генераторы постоянного тока для дуговой сварки..............  [c.453]

Электрическая связь с энергоснабжающей системой при наличии заводской электростанции предназначается для а) взаимного резервирования станций, причём пропускная способность подстанций связи и линий передачи должна обеспечивать резервирование питания завода при выходе в ревизию или при аварийном отключении наиболее мощного генератора, с учётом возможности перегрузки трансформаторов и ограничения мощности неответственных потребителей б) выпуска в энергосистему свободной мощности заводской электростанции в связи с колебаниями электрической нагрузки завода и режимом агрегатов заводской ТЭЦ, работающих по тепловому графику, в частности турбогенераторов, работающих с противодавлением в) передачи в энергосистему пиковых нагрузок дуговых электропечей, моторов прокатных станов и т. п. при относительно недостаточной мощности своей станции.  [c.457]

При проектировании установки дуговых электропечей надлежит учитывать влияние этих эксплоатационных коротких замыканий на а) работу генераторов электростанции .  [c.476]

Фидеры, питающие электропечи, целесообразно коммутировать непосредственно на шины электростанции или районной трансформаторной подстанции. Вопрос о возможности питания дуговых сталеплавильных электропечей от генераторов электростанции или понизительных трансформаторов энергосистемы решается на основании расчёта колебаний напряжения в заводской сети.  [c.476]

Рост установок дугового электрического освещения вызывал потребность в мощных источниках тока. Появление динамомашины — экономичного электромашинного генератора — способствовало расширению сферы энергетического применения электричества. Разработка относительно дешевого и доступного приемника электрической энергии повлекла  [c.56]


К первым годам XX в. относятся практические применения в радиотехнике незатухающих электромагнитных колебаний. Источниками таких колебаний служили дуговые генераторы и специальные электрические машины высокой частоты. Переходу на незатухающие колебания предшествовали разнообразные технические попытки улучшить качество сигналов, передаваемых устройствами искрового типа, путем уменьшения затухания генерируемых колебаний. Примером таких попыток могут служить радиопередающие устройства системы К. Брауна (1902 г.) и М. Вина (1906 г.). Однако наибольший эффект был достигнут в передатчиках с так называемой звучащей искрой . Суть метода состояла в том, что в искровом передатчике затухающих волн прерывали искровой разряд с частотой порядка нескольких тысяч раз в секунду. В радиоприемнике работа таких передатчиков воспроизводилась, как телеграфный сигнал звукового тона [47].  [c.317]

В передающих устройствах незатухающих колебаний наибольшее распространение сначала получили дуговые генераторы, среди которых следует отметить хорошо известную конструкцию датского инженера В. Пауль-сена (1902 г.). В дуговых генераторах его системы удавалось получать довольно значительные для того времени мощности порядка сотен киловатт.  [c.317]

Раскисление оказывает особенно сильное влияние на свойства и поведение сталей. Обычно присутствующие в расплавленной стали окислы должны удаляться перед затвердеванием, так как в противном случае образуются оксидные включения. Идеальным методом раскисления стали является использование реакции 2С + 02->-2С0, которая может протекать при вакуумной очистке стали (например, при производстве роторов генераторов) или при вакуумном дуговом переплаве.  [c.50]

Поскольку в магнитострикционных вибраторах имеют место существенные потери на внутреннее трение, вихревые токи и гистерезис, они требуют для получения большой акустической мощности достаточно мощных генераторов высокой частоты. Однако ламповые генераторы дороги и сравнительно сложны. Поэтому Цширнт [22081 поставил опыты по возбуждению магнитострикционных вибраторов от импульсных дуговых генераторов. Дуговой генератор является простейшим устройством, позволяющим получить значительную мощность колебаний высокой частоты при сравнительно высоком к. п. д. недостатком его является малая стабильность как частоты, так и амплитуды. Как показано на фиг. 53, колебательный контур дугового генератора состоит из последовательно соединенных возбуждающей обмотки вибратора 5, емкости С и переменной индуктивности Ь. Настройка контура на собственную частоту механических колебаний вибратора осуществляется при помощи переменной индуктивности Ь. Дуга питается от сети постоянного тока (400—700 в) через регулировочное сопротивление и дроссель Для подмагничивания вибратора служит отдельный источник постоянного тока, включенный  [c.56]

Другим способом бесконтактного возбуждения дуги является применение импульсных генераторов, использующих накопптель-пь(е емкости, которые заряжаются от специального зарядного устройства и в моменты повторного возбуждения дуги разря-жаютс>[ на дуговой промежуток. Так как фаза перехода сварочного тока через нуль во время сварки не остается строго постоянной, то для обеспечения надежной работы генератора необходимо устройство, позволяющее синхронизировать [)азряды емкости с моментами перехода тока дуги чер( 3 ноль.  [c.139]

Источником света в таких установках служит либо мощная дуговая ламна вь[сокого давления, либо квантовый генератор. С помощью зеркал и оптических линз свет poKy npyeT fr па свариваемом изделии в пятно диаметром от 2—3 мм до 20—50 мкм.  [c.165]

Устойчивость дуг переменного тока ниже, чем дуг постоянного тока. Это связано с тем, что при питании дуги с частотой 50 Гц дуга 100 раз в секунду гаснет и вновь возбуждается. Для повышения ста-,5ильности горения дуги в покрытия и флюсы вводят вещества ( соединения калия, кальция, цезия и др.), способствующие хоро- jTjen проводимости дугового промежутка. Применяют также спе-ц иальные устройства, называемые осцилляторами и генераторами Шпульсов, которые способствуют возбуждению дуги синхронно с частотой питающей сети.  [c.55]

Рис. 11. Оптическая схема экспериментальной установки для спектрального анализа / — источник света н электроды дуги 2 — защитная кварцевая пластинка 3, 4, 5, 6 — трехлинзовый конденсор 7 — гартмановская диафрагма или ступенчатый ослабитель 8 — щель спектрографа 9 — зеркало коллиматор,а 10—призма II — камерный объектив 12 — фотопластинка 13 — дуговой генератор 14 — кнопка включения Рис. 11. <a href="/info/4760">Оптическая схема</a> <a href="/info/127210">экспериментальной установки</a> для <a href="/info/12728">спектрального анализа</a> / — <a href="/info/10172">источник света</a> н электроды дуги 2 — защитная кварцевая пластинка 3, 4, 5, 6 — <a href="/info/412018">трехлинзовый конденсор</a> 7 — гартмановская диафрагма или <a href="/info/237780">ступенчатый ослабитель</a> 8 — щель спектрографа 9 — зеркало коллиматор,а 10—призма II — камерный объектив 12 — фотопластинка 13 — дуговой генератор 14 — кнопка включения
Простейшей является схема линейного МГД-генератора, экспериментальная модель которого показана на рис. XV. 30. Он состоит из узкого канала 6, в который через вход 2 вдувается ионизированный газ, предварительно нагретый в камере 3 дугой, создаваемой электродами 1. В дуговую камеру подаются легкоионизирующнеся добавки 4 в виде соединений щелочных металлов. К двум противоположным стенкам канала подводится магнитное поле, создаваемое электромагнитом 7. Индуктированный в проводящем газе ток снимается с электродов, смонтированных на двух других стенках канала. Газ поступает в генератор из ресивера 5.  [c.459]

В 1908 г. в журнале Электричество А. Н. Лодыгин опубликовал статью, в которой были впервые описаны принцип работы и конструкция тигельной индукционной печи без магнитопровода. В 1912—1913 гг. Дюбуа-Лоренцом была создана первая такая печь, питавшаяся от высокочастотного дугового генератора. Подобная печь с питанием от искрового генератора была построена в 1916 г. инж. Нортрупом в США. Эти печи имели незначительную емкость вследствие малой мощности питавших их генераторов.  [c.5]


Твердые вещества имеют широкие полосы поглощения и для накачки целесообразно использовать газоразрядные лампы с широким спектром излучения. Газообразные вещества имеют относительно узкие и весьма интенсивные линии поглощения и возбуждаются нередко с помощью газового разряда в самой активной среде, — т. е. в газе. Для газовой смеси удается получить высокую инверсию населенности при определенном режиме газового разряда. К таким средам относятся смеси гелия и неона, гелия и ксенона, неона и кислорода, аргона и кислорода и др. Обычно газовая среда состоит из двух газов, в которой активным является один из газов, а второй лишь используется для не-, редачи энергии накачки к частицам активного газа например, в ге-лийнеоновом ОКГ в состав смеси входит гелий Не и неон Ne в соотношении 10 I давление составляет 1 мм рт. ст. Источником стимулированного излучения служат атомы неона. Возбуждение достигается либо с помощью высокочастотного генератора, либо с помощью тлеющего разряда в трубке при высоком постоянном напряжении. Возбужденные атомы гелия с большим временем жизни, 1000 мксек, передают при столкновениях свою энергию атомам неона. В смеси азота с углекислым газом излучательные переходы совершаются между уровнями молекул СОз, а возбужденные атомы азота лишь передают свою энергию углекислому газу. В генераторах на аргоне генерация возникает при дуговом разряде в аргоне. Возможно использование и других газов. —  [c.223]

Мастерские в Кинешме выросли к 90-м годам в самостоятельный завод, изготовлявший Электроугли, гальванические элементы,- лампы накаливания, дуговые лампы, электрические генераторы и электродвигатели. Эти изделия изготовлялись под руководством талантливого технолога А. И. Бюксенмайстера (1845—1931), экспонировались на разных выставках и отличались хорошим качеством. Упомянутый завод Т-ва П. Н. Яблочкова в Санкт-Петербурге начал работать в 1881 г., на нем изготовлялся довольно большой ассортимент разных электроизделий, в том числе электрические свечи, лампы накаливания, аккумуляторы и т. п.  [c.92]

В самом начале XIX в. при первых исследованиях действий и проявлений гальванического тока были открыты три возможных метода преврап1 ения электрической энергии в световую, которые и стали принципиальной основой построения электрических источников света. Это — нагревание проводника током, дуговой разряд между угольными электродами и разрядное свечение в вакууме. Прошло, однако, несколько десятилетий, прежде чем эта проблема получила дальнейшую экспериментальную разработку и продвижение в практику, и лишь с появлением электромашинного генератора 3. Т. Грамма (1870 г. началось интенсивное развитие электрического освеш ения.  [c.137]

В связи с этим в 1920 г. в Москве на Шаболовке В. М. Лебедевым была построена и вступила в строй 100-киловаттная радиостанция незатухающих колебаний с дуговым генератором. Сначала эта радиостанция работала на антенну, подвешенную на двух деревянных мачтах высотой 160 л . Позже, в 1921 г., для нее по проекту и под руководством выдающегося русского инженера, впоследствии почетного академика, В. Г. Шухова была сооружена знаменитая Шуховская башня высотой 160 м (рис. 52). Ажурный силуэт радиомачты на Шаболовке и поныне является характерной чертой архитектурного облика нашей столицы. Контуры башни органически увязываются с другими высотными сооружениями Москвы, а сама башня — своеобразный памятник советской радиотехники.  [c.292]

Агрегат СМП-3 (фиг. 18) предназначен для дуговой сварки металлическим электродом диаметром от 4 до 12 мм, а также сварки и резки угольным электродом. Состоит из сварочного генератора типа СМП-3 и приводного асинхронного двигателя трёхфазного тока, установленных на общей фундаментной плите  [c.283]

До него каждая дуговая лампа должна была иметь свой источник тока. Яблочков разработал несколько весьма эффективных схем дробления электрической энергии , одна из которых — дробление посредством индукционных катушек — легла в основу построения электроэнергетических установок переменного тока, а сами индукционные катушки стали заметной вехой на пути создания трансформатора. В схемах Яблочкова впервые появились основные элементы современных энергетических установок первичный двигатель, генератор, линия передачи и приемники.  [c.56]

Начальный период электрификации связан с использованием постоянного тока. После удачных опытов применения динамомашин в 70-х годах XIX в. возникли небольшие генераторные установки для питания одной определенной нагрузки дуговой лампы, электрического двигателя или гальванической ванны. Это был этап децентрализованного производства электрической энергии. Следующей ступенью в развитии электроснабжения стало питание от общего генератора ряда приемников — от домовых электростанций затем возникли станции местного значения, служившие для электроснабжения городского квартала или завода — так называемые блок-станции. Они вырабатывали ток низкого напряжения (порядка 100—200 В), что резко ограничивало протяженность электрических сетей. Первые блок-станции возникли в Париже для питания свечей Яблочкова. В России первой станцией такого рода была установка для освещения Литейного моста в Петербурге, построенная в 1879 г. при участии П. Н. Яблочкова. В конце 1881 г. появились блок-станции, в сети которых включались дуговые лампы и лампы накаливания, например станция в. Честерфилде (Англия) и станция в Лубянском пассаже в Москве.  [c.60]

Крупная промышленность выдвинула к концу XIX в. ряд совершенно новых требований к ведению самого производства. Увеличилась его сложность и точность, произошло ускорение темпов технологических процессов, развились непрерывные виды производства, расширились площади промышленных предприятий — все это усложнило задачу управления системой машин. В ряде случаев человек оказывался не в состоянии справиться с механическими операциями без специальных дополнптельных средств. Ярким примером такого производства стала металлургическая промышленность. В начале 90-х годов электрический привод проникает на металлургические заводы США для производства проката и для осуществления загрузки мартеновских и доменных печей. В этот период зарождается автоматическое управление процессами пуска, торможения, остановки и скоростью электродвигателей с помощью релейно-контакторной аппаратуры, а также появляются схемы электромашинной автоматики. Предвестником электромашинной автоматики следует считать изобретение русского электротехника В. Н. Чиколева — его дифференциальную лампу с электродвигателем для регулирования положения углей в дуговой лампе (1874 г.) [31]. Следующим шагом на пути к электромашинному регулированию была схема генератор — двигатель М. О. Доливо-Добро-вольского (1890 г.) для электродвигателей с сериесным возбуждением, с помощью которой обеспечивалась примерно постоянная скорость вращения при значительных изменениях нагрузки [28, с. 2151. В 1892 г. американский инженер В. Леонард предложил способ плавного и в широких пределах регулирования по схеме генератор — двигатель, ставшей классической [32]. Она нашла широкое применение для электропривода прокатных станов и подъемников начиная с 1903 г., когда немецкий инженер К. Ильгнер сделал дополнение к схеме Леонарда в виде махового колеса для выравнивания толчкообразной нагрузки. Эту систему электромашин-ного управления используют до настоящего времени.  [c.62]


Почти одновременно с дуговыми генераторами в радиопередатчиках стали использовать и электрические машины высокой частоты. Этот тип передающих устройств незатухающих волн отличался тем, что генерировал периодические колебания почти синусоидальной формы. Мощности достигали сотен киловатт. Для радиотехнических применений строили специальные машины, способные генерировать переменные токи достаточно высоких частот (вплоть до 30—40 кГц). Большую известность приобрели машины высокой частоты американских инженеров Р. Фессендена и Э. Александер- сона, немецких конструкторов Р. Гольдшмидта и Г. Арко, французского ученого Ж. Бетено. В России ряд конструкций машин высокой частоты создал В. П. Вологдин.  [c.317]

Коралл-1 . Установка выполнена в виде приставки к стандартному спектрографу и предназначена для спектрального анализа, основанного на отборе пробы исследуемых веществ с помощью ОКГ и сжигания отобранного вещества в электрических разрядах, получаемых от стандартных искровых и дуговых генераторов. Позволяет проводить спектральный анализ малых количеств веществ (примерно 10 %) любых твердых материалов, в том числе и неэлектропроводных, а также анализ структурных составляющих и включений в сплавах, металлах и минералах с наименьшим диаметром поражения (50 мкм). Длина волны излучения лазера 1,06 мкм, энергия импульса излучения 0,4 Дж, частота следования импульсов 0,5—1 Гц, длительность импульса 0,15 мс, потребляемая мощность 2 кВт. Габаритные размеры генератора 680x430x530 мм, блока питания — 595x545x380 мм.  [c.311]

Для индукционных бессердечнико-вых плавильных печей, работающих от самостоятельных двигатель-генераторов, должна быть предусмотрена защита от чрезмерного повышения напряжения и прекращения охлаждения катушки печи. Согласование настройки токовой защиты с действием авюматического регулятора дуговой сталеплавильной печи должно осуществляться путем увеличения тока трогания реле, времени выдержки реле или скорости подъема электродов и в отдельных случаях за счет увеличения реактивного сопротивления установки. Ток трогания реле. толже быть не более 3—3,5-кратного значения номинального и выдержка времени не более 10 сек.  [c.22]

Источник тока — низковольтный -генератор постоянного тока типа НД1 500 /750. Установка может работать также на переменном токе от сети, выпрямленном при помощи двух селеновых выпрямителей типа ВСГ-Зм. В практике ремонтных предприятий находит лрименение контактио-искровой и контактно-дуговой апособы виброконта1ктной наплавки. Последний способ бо-  [c.182]

Непрерывный оптический разряд (НОР) — стационарное поддержание плотной равновесной плазмы излучением лазера непрерывного действия (напр., СО -ла-зера) был предсказан теоретически и получен на опыте в 1970. По сравнению с традиц. способами поддержания плазмы с Г 10 000 К при помощи дугового, индукционного, СВЧ-раэрядов для подвода энергий к плазме оптич. способом не требуется конструктивных элементов электродов, индуктора, волновода. Световая энергия свободно передаётся на расстояние световым лучом. Это открывает возможность зажигания плазмы на расстоянии от лазера и в любых, даже труднодоступных местах. Если продувать холодный газ через горящий НОР, подобно тому, как это делается в дуговых и прочих генераторах непрерывной плазменной струи — плазмотронах, получается оптический плаз-  [c.449]

Применения. Газовые разряды применяют в газосветных приборах, в электронных диодах с газовым наполнением, тиратронах, ртутных выпрямителях (игнитронах), в качестве стабилизаторов напряжения в счётчиках Гейгера ядер-ных частиц, в антенных переключателях, озонаторах, маг-нитогидродинамшеских генераторах. Широко используются электродуговая сварка, электродуговые печи для плавки металлов, дуговые коммутаторы. Получили большое распространение генераторы плотной равновесной низкотемпературной плазмы с К, /)--1 атм—плазмотроны (дуговые, индукционные, СВЧ). В них продуванием холодного газа через соответствующий разряд получают плазменную струю. Тлеющий и ВЧЕ-разряды используют для создания активной среды в лазерах самой разл. мощности—от мВт до многих кВт, в плазмохимии. Эти и др. приложения, использование результатов исследований Э. р. в г. в технике высоких напряжений поставило физику газового разряда в ряд наук, к-рые служат фундаментом совр, техники.  [c.514]


Смотреть страницы где упоминается термин Генераторы дуговые : [c.279]    [c.130]    [c.136]    [c.165]    [c.121]    [c.7]    [c.46]    [c.117]    [c.52]    [c.92]    [c.171]   
Машиностроение Автоматическое управление машинами и системами машин Радиотехника, электроника и электросвязь (1970) -- [ c.292 ]



ПОИСК



Генераторы для сварки ручной дуговой



© 2025 Mash-xxl.info Реклама на сайте