Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Установка для исследования прочности материалов в ши

Выбор размера образца обусловливается различными факторами. Главную роль при этом играет трещиностойкость материала. Если исследованию подлежит материал после термической обработки на высокую прочность и твердость, когда обычно материал обладает пониженной трещиностойкостью, то достаточно изготовить образцы относительно малых размеров. В таком случае для образования трещин и проведения испытаний могут быть применены малые токарные станки. Кроме того, размер образца в каждом конкретном случае определяется мощностью имеющейся установки.  [c.207]


Вынужденные колебания зависят не только от свойств системы, но и от внешних возмущ,аюш,их моментов, действующих на систему. Эти колебания становятся особенно сильными при резонансных режимах, когда частота внешних возмущающих моментов совпадает с частотой свободных колебаний системы. Такие колебания называются резонансными вынужденными колебаниями. Резонансные колебания характеризуются тем, что амплитуды вынужденных колебаний масс системы зависят от времени и с течением времени растут. Теоретически, если не учитывать сопротивлений в системе, амплитуды колебаний растут во времени неограниченно. Практически вследствие того, что в системе имеются различные виды сопротивлений, амплитуды резонансных вынужденных колебаний растут до конечных величин. Так как при резонансных колебаниях резко возрастают амплитуды колебаний масс системы, то, естественно, резко увеличивается скручивание участков валопровода, что приводит к значительному увеличению дополнительных динамических напряжений в участках системы за счет крутильных колебаний. При этом часто напряжения достигают такой величины, что приводят к поломкам в системе валопровода. Наконец, эти напряжения во время работы могут менять не только свою величину, но и знак. При высоких частотах колебаний в системе валопровода будет получаться большое число перемен знаков напряжений, что особенно вредно отражается на прочности материала, так как усталостный характер нагрузки приводит к усталостному разрушению материала, которое наступает при напряжениях меньших, чем допускаемые напряжения при статических нагрузках. Следовательно, необходимо исследование вынужденных крутильных колебаний при расчете на прочность системы валопровода установки дизеля.  [c.141]

В эксплуатации наличие постоянной составляющей напряжений от внутреннего давления, а также различная степень предварительного сжатия или растяжения сильфонного компенсатора при установке в системе трубопроводов приводят к наклепу и асимметрии цикла напряжений и деформаций. Литературные данные [39, 122, 262], а также результаты исследований малоцикловой прочности конструкционного материала при наклепе свидетельствуют о том, что при жестком нагружении (постоянство максимальных циклических деформаций) наличие средней деформации — примерно половины предельной статической — практически не влияет на долговечность (Л > 100 циклов), и в первом приближении разрушение определяется только циклической составляющей нагружения.  [c.183]


Прутки из композиционного материала магний—борное волокно диаметром 6,35 мм и длиной 102 мм изготовляли пропиткой жидким магнием пучка борных волокон, набиваемых в трубки из окиси алюминия, на установке, схематически изображенной на рис. 44 [122]. Количество волокон в трубках составляло 50, 60 и 70 об. %. Для свободного удаления композиционного материала трубку смазывали смесью коллоидного графита с этиловым спиртом. Металлографические исследования и механические испытания полученных образцов показали, что наиболее эффективная пропитка волокон бора достигалась при их содержании в трубке 60—70 об. % и при температуре расплава 750°С. В образцах, содержащих менее 65 об. % волокон, было обнаружено большое количество пор. Взаимодействия между магнием и бором в полученных по указанному режиму образцах не обнаружено. Максимальный предел прочности образцов при сжатии был равен 321 кгс/мм .  [c.94]

В гл. 6 освещены вопросы устойчивости оболочечных систем при неоднородных напряженных состояниях, вызванных действием ло-1 альных нагрузок. Рассмотрена устойчивость сферического сегмента, подкрепленного опорным кольцом, к которому приложены произвольные локальные нагрузки в его плоскости. При проведении исследований применялся модифицированный метод локальных вариаций. Решение основано на минимизации функционала энергии, составленного с учетом вида нагружения и конструктивных особенностей системы. В качестве примера рассмотрены задачи устойчивости сферы при нагружении двумя радиальными силами и упругим ложементом. Приведены результаты экспериментального исследования устойчивости и прочности сферических сегментов — сплошных и с отверстиями — и прочности колец при локальных нагрузках. Исследования проведены на специальной установке для исследования несущей способности оболочек при локальном нагружении. Получены кинограммы процесса потери устойчивости системы. Рассмотрена задача динамической устойчивости цилиндрической оболочки при импульсном нагружении подкрепляющего кольца. Материал оболочки и кольца принят упругим или нелинейно-упругим. Рассмотрено взаимодействие симметричных и изгибных колебаний системы с построением областей динамической устойчивости.  [c.5]

Помимо расчета прочности дисков турбин получили также развитие экспериментальные методы исследования ползучести, несущей способности (разрушающих оборотов) в зависимости от различных факторов особенностей конструкции, свойств материала, условий нагружения и нагрева и др. Для этих исследований созданы специальные разгонные установки, позволяющие проводить испытания как натурных дисков, так и моделей в условиях, близких к рабочим. В существующих разгонных камерах можно проводить испытания роторов и дисков диаметром до 1500 мм и весом в несколько тонн. Для испытания роторов стационарной энергетики длиной до 3 м, диаметром до 1800 мм имеются уникальные стенды [50].  [c.252]

Экспериментальная установка для исследования повышения точности формообразования трубопроводов на станках с числовым программным управлением путем автоматической компенсации пружинения материала. Равва Ж. С., Р у м а-нов Б. А. Адаптация, динамика, прочность и информационное обеспечение систем-73 . Куйбышевское книжное издательство, 1974, стр. 176.  [c.397]

Для создания универсальных установок с более высокой рабочей температурой исследования прочности тугоплавких материалов [37, 39, 150] сделаны новые разработки [43, 44, 45, 96, 101, 148], а также использованы идеи и конструкторские решения, реализованные и проверенные в специализированных установках [8, 27, 28, 143, 147, 160]. В результате разработаны универсальные высокоточные установки для иследования прочности [37, 39, 150], которые сочетают в себе преимущества комплексного использования методов растяжения — сжатия, измерения микротвердости и тепловой микроскопии, обладают большими возможностями изучения широкого круга разных матери-  [c.95]


Так, в области исследования прочности полимерных материалов в Институте машиноведения были разработаны методы комплексных испытаний деталей из стеклопластмасс на прочность в условиях, близких к эксплуатационным. В результате на специальной установке осуществлен выбор материала и оценена деформативность и выносливость шаров для подшипников качения статистическая интерпретация результатов позволила получить расчетную оценку долговечности шаров в связи с рядом конструктивных и технологических факторов. Для сравнительной оценки прочности стеклопластмасс  [c.215]

Для исследования прочности при переменных напряжениях материала крупных поковок и штамповок целесообразно проводить испытания больших образцов на мощных установках, поскольку увеличение диаметра образца от (1=Ъ 7 до а = 150-Ь200 мм снижает предел выносливости конструкционных сталей на 30—45%. Образцы для испытания на усталость в рабочей части могут иметь утонение. Такая форма обеспечивает большую стабильность результатов. Ограничение напрягаемого объема в каждом образце может быть до некоторой степени компенсировано увеличением количества испытываемых образцов с 6—8 до 15—20. В последнем случае появляется возможность ста-  [c.68]

Важность исследования импульсных напряжений в конструкциях из композиционных материалов может быть проиллюстрирована на примере лопатки компрессора реактивного двигателя [61]. Лопатки рассчитывают с учетом восприятия центробежных и вибрационных нагрузок. Кроме того они должны быть рассчитаны на случай соударения с посторонними объектами, такими как птицы, град, камни, гайки и болты. Скорость соударяющегося тела относительно лопатки может составлять около 450 м/с. Импульсное воздействие малого тела продолжается очень недолго (<С50 мкс) и вызывает в начальный момент сосредоточение энергии удара в малой области лопатки. При этом удар может вызвать не только образование местного кратера или трещины, но и сопровождается повреждениями вдали от места контакта, вызываемыми отражением волн напряжений от границ и эффектом фокусировки из-за изменения геометрии лопатки. Обеспечение прочности лопатки при соударении с внешними объектами требует специальных конструктивных решений, таких как введение в материал высокопрочной сетки и установка на ведущую кромку противоударного протектора.  [c.265]

Зацаринный В. В. Исследование длительной циклической прочности на установках без следящей системы нагружения.— Матер. Всесоюз. симпоз, по малоцикповой усталости при повышенных температурах. Челябинск ЧПИ, 1974, вып. 2.  [c.282]

Экспериментальное исследование напряжений возможно на натурных деталях и на их моделях. Исследование натурных деталей возможно с помощью проволочных датчиков сопротивления, метода лаковых покрытий, а также с помощью рентгенографии. Однако на металлической модели очень трудно определить величины концентрации напряжений. Это успешно можно выполнить с помощью поляризационнооптического метода на моделях из оптически-активпого материала. Условия работы и условия нагружения таких деталей паровых турбин, как корпусы стопорных и регулирующих клапанов свежего пара, корпусы клапанов промежуточного перегрева, корпусы цилиндров турбин, сопловые коробки, различные элементы паровпуска, близки, особенно в блочных установках, к работе таких элементов паровых котлов, как цилиндрические барабаны, камеры, коллекторы и т. п. Диски, сварные и цельнокованые роторы паровых турбин работают, как правило, при отсутствии знакопеременных нагрузок и при относительно малых температурных градиентах по радиусу. Вследствие этого для них можно в общем случае применить те же коэффициенты запаса прочности, что и для перечисленных выше неподвижных деталей. При всех прочих равных условиях коэффициенты запаса прочности различны для деформированного и для литого металла для литого они более высоки.  [c.30]

Во многих существующих установках, предназначенных для исследования долговременной прочности пластмассовых труб, используется способ одновременного нагружения нескольких образцов внутренним гидростатическим давлением. Имеющиеся испытательные стенды [1] связаны с газобалонной установкой, от которой к образцу через ряд последовательно расположенных устройств (газовый редуктор, ресивер, дроссельный и обратный клапаны, распределитель, вентили) передается преобразованное давление. Внутреннее гидростатическое давление в образцах создается при помощи сжатого воздуха или инертного газа. Поскольку в процессе ползучести материала образцов труб происходит некоторое увеличение их объема, возникает необходимость в регуляторах давления. Потери давления усч губляЮ Тся также наличием длинной передаточной схемы устройств и приборов от баллона к образцам за счет утечек на линиях газа. Часто падение давления за сутки составляет 5— 10%, что пагубно сказывается на результатах испытания. Наличие газобаллонной установки высокого давления повышает требования к технике безопасности при проведении исследовании, влечет к изготовлению дополнительных ограждений. Подобные испытательные стенды применяются как в СССР, 228  [c.228]

Из данных табл. 5.17 видно, что разрушение образцов из стеклопластика, в которых выполнены отверстия, происходит при напряжениях, равных 0,66-0,72 прочности при растяжении целого материала, а после установки крепежных элементов — происходит при напряжениях, составляющих всего 0,41-0,67 прочности [78]. Увеличение коэффициента концентрации напряжений в 1,6-1,8 раза после введения болта в отверстие растягиваемого образца из стеклотекстолита на основе полиэфирной смолы ПН-3 и стеклянной ткани АСТТ(б)-С,-0 было установлено в отечественном исследовании [117]. В связи с этим при расчете прочности изделия, собранного с применением механического крепления, необходимо учитывать коэффициент К концентрации напряжений для соединительного шва, который определяется экспериментально.  [c.228]



Смотреть страницы где упоминается термин Установка для исследования прочности материалов в ши : [c.147]    [c.39]    [c.175]    [c.109]   
Смотреть главы в:

Механические испытания материалов при высоких температурах  -> Установка для исследования прочности материалов в ши



ПОИСК



Борисенко, В. П. Кращенко. Установка для исследования прочности материалов при высоких температурах

Материалы Прочность

Прочность Исследование

Установка ИП-10 для исследования прочности и деформативности материалов при скоростях

Установка для внутриреакторного исследования конструкционных материалов на ползучесть и длительную прочность «Нейтрон

Установка для исследования высокотемпературной циклической прочности конструкционных материалов

Установка для исследования ползучести и длительной прочности тугоплавких материалов

Установка для исследования прочности материалов при различных скоростях нагружения в широком диапазоне температур

Установка для исследования прочности материалов при растяжении — сжатии с одновременным определением микротвердости

Установка и материалы



© 2025 Mash-xxl.info Реклама на сайте