Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Благородные скорость

В однофазных сплавах типа сплав — твердый раствор скорость коррозии не находится в прямой зависимости от состава сплава, а меняется скачкообразно по правилу порогов устойчивости, разработанному Тамманом. Это правило, называемое также правилом п/8, гласит, что при легировании менее электроположительного металла более электроположительным (т. е. более благородным) скорость коррозии будет снижаться скачкообразно по мере добавления количества, кратного п/8 атомной доли более благородного металла. При этом равновесный потенциал сплава будет также повышаться ступенчато, приближаясь к потенциалу чистого более благородного металла.  [c.70]


Как коррозионностойкий материал применяется свинец чистоты не меиее 99,2%- Примеси в свинце (Си, 5п, Аз, Ре, В1 и др.) увеличивают прочностные показатели свинца, но уменьшают его пластичность. Примеси мышьяка придают свинцу хрупкость. Имеются указания, что примеси серебра, никеля и меди повышают коррозионную стойкость свинца, если они распределены в сплаве равномерно. Однако в процессе коррозии па поверхности свинца скапливаются эти благородные примеси, образующие микрокатоды, что может привести к повышению скорости коррозии свинца.  [c.261]

Сюда также относятся металлы, становящиеся пассивными в пассивирующих растворах, такие как железо в растворах хро-матов. Металлы и сплавы этой группы обладают склонностью к значительной анодной поляризации. Выраженная анодная поляризация уменьшает наблюдаемые скорости реакции, так что металлы, пассивные по определению 1, обычно подчиняются и определению 2, основанному на низких скоростях коррозии. Коррозионные потенциалы металлов, пассивных по определению 1, достигают катодного потенциала разомкнутой цепи (т. е. потенциала кислородного электрода) и поэтому как компоненты гальванического элемента они демонстрируют потенциалы, близкие к потенциалам благородных металлов.  [c.71]

Два металла, находящиеся в контакте друг с другом и имеющие разные электродные потенциалы, образуют в электролите макро-гальванический элемент, работа которого влияет на скорость коррозии каждого из них. Металл с более отрицательным электродным потенциалом (менее благородный) в данном электролите будет анодом, а с более положительным потенциалом (более благородный) -катодом гальванического макроэлемента. В результате работы такой пары растворение металла анода, как правило, увеличивается, а катода - замедляется или иногда полностью прекращается,.  [c.39]

Из таблицы видно, что скорость коррозии железа с более благородными металлами примерно одинаковая.  [c.6]

Анализ поляризационной кривой позволяет сделать предварительное заключение о том, что наименьший коррозионный ток, т. е. наименьшая скорость коррозии, соответствует потенциалам металла, лежащим между потенциалом полной пассивации (рп п и потенциалом пробоя (потенциалом питтингообразования) Ч Пр Сдвиг значений потенциала в область более благородных по сравнению про-  [c.164]

Покрытия иридия на вентильных металлах целесообразны в тех случаях, когда при повышенной температуре или критическом составе среды скорость коррозии платины получается слишком большой. Впрочем, обычно ограничиваются применением платиноиридиевого сплава, содержащего около 30 % 1г поскольку покрытие вентильных металлов чистым иридием в технологическом отношении гораздо более сложно. По той же причине не нашли распространения и другие благородные металлы, например родий [211. Цены платины и иридия в настоящее время уже существенно не различаются.  [c.206]


Пленки на поверхности катода препятствуют переходу электронов и поэтому имеют важное значение для скорости коррозии. По этой причине такие благородные металлы, как Ag, Си, Аи, Pt, которые не образуют пленок, невыгодны для более анодных металлов, чем Fe и РЬ в нейтральных растворах, в которых окислителем является растворенный кислород. То же самое происходит с данными благородными металлами в кислых  [c.35]

В приведенном ниже ряду активностей некоторых промышленных материалов и сплавов в морской воде не даны фактические значения потенциала (который зависит от состава морской воды, степени ее насыщения, температуры и скорости), но систематизированы металлы по порядку присущего им коррозионного потенциала в этой среде. Самые благородные металлы (с наиболее положительными потенциалами) находятся в верхней части ряда, а наиболее активные — в нижней. Чем дальше расположены два металла друг от друга в ряду, тем больше гальванический эффект при их контакте.  [c.36]

В многоэлектродной системе металл, обладающий наибольшим отрицательным потенциалом, является анодом, а металл с наиболее положительным потенциалом — катодом [79]. При этом скорость контактной коррозии зависит от разности потенциалов и поляризуемости каждого электрода. Поэтому, как было показано И. Л. Розенфельдом, при одной и той же разности потенциалов можно наблюдать различные скорости контактной коррозии [80]. Контактная коррозия может проявиться и при наличии в электролите ионов более благородных металлов, осевших на поверхности менее благородного металла [58]. Известно, что осаждение ионов меди на поверхности алюминия, железа и оцинкованного железа вызывает разрушение последних [58].  [c.82]

При растворении сплавов возможен переход в раствор отдельных их компонентов либо в том же соотношении, что и в самом сплаве (равномерное растворение), либо в ином соотношении (избирательное растворение). На основе общих соображений избирательное растворение сплава должно сопровождаться обогащением его поверхности более благородным компонентом и иметь место при условиях, при которых скорости растворения составляющих сплав компонентов в индивидуальном состоянии заметно различаются друг от друга. Соответствующий анализ электрохимического поведения железа и хрома в активном состоянии позволяет предположить, что их сплавы в активной области потенциалов должны растворяться с преимущественным переходом в раствор хрома. В согласии с этим, анализ продуктов растворения стали Х13 в 0,1 н. серной кислоте при потенциалах отрицательнее потенциала пассивации (-0,25 в по н.в.э.) показал [66], что отношение количеств хрома и железа в растворе при этих потенциалах превышает то же отношение, соответствующее исходному сплаву,  [c.14]

Атаке подвергается только менее благородный металл. Другими словами, термин биметаллическая коррозия означает, что скорость коррозии металла в присутствии электролита возрастает в результате контакта с более благородным металло . Это происходит потому, что процесс восстановления легче протекает на более благородных металлах, чем на менее благородных, причем одновременно растет отношение площадей поверхности катода и анода.  [c.39]

Контактная коррозия наблюдается при контакте алюминия с более благородными металлами в электролитах. В этом виде коррозии существенную роль играют состояние поверхности контактируемых металлов, площадь контакта, аэрация и степень деформации. Значительная контактная коррозия наблюдается при контакте алюминия с медью, ее сплавами и сталью известны случаи контактной коррозии алюминия с алюминиевыми сплавами. Скорость коррозии алюминия при контакте с нержавеющей сталью значительно повышается в водных растворах хлорида натрия и в меньшей степени в спиртовых растворах.  [c.124]

Процесс коррозии может протекать по гомогенно-электрохимическому и гетерогенно-электрохимическому механизмам. Для жидких металлов, амальгам и чистых твердых металлов, поверхность которых эквипотенциальна, в любой точке поверхности могут происходить катодный или анодный процессы, скорости которых равны. При наличии на поверхности металла фаз с разными термодинамическими свойствами происходит пространственное разделение катодного и анодного процесса (гетерогенный механизм), возникают так называемые локальные элементы. Как правило, анодный процесс локализуется на менее благородной фазе. Причины возникновения электрохимической неоднородности и типы коррозионных гальванических элементов приведены в табл. 2.3.  [c.17]


Превосходная коррозионная стойкость меди и ее сплавов частично объясняется тем, что медь является относительно благородным металлом. Тем не менее во многих средах ее удовлетворительное коррозионное поведение зависит от формирования плотных относительно тонких пленок продуктов коррозии. Эта окисная пленка, покрывающая металл состоит из окиси меди, покрытой смесью хлорокиси меди, гидроокиси меди, основного карбоната меди и сульфата кальция. Так как кислород должен диффундировать сквозь эту пленку, следует ожидать, что в нормальных условиях скорости коррозии будут уменьшаться с увеличением длительности экспозиции.  [c.250]

Скорость диффузии оказалась наибольшей для благородных газов,- s, I, Те и Вг диффундируют медленнее. Скорость диф-  [c.139]

При наличии электрических разрядов механизм образования пленок усложняется. Под влиянием высокой температуры разрядов возникают стекловидные смешанные окислы и нитриды, образующие неравномерные по толщине пленки, локализованные вблизи мест разрядов. Последующие разряды могут вызвать частичное разложение пленок и очищение контактной поверхности, но в большинстве случаев скорость образования пленок выше скорости очищения даже на контактах из благородных металлов. Наличие пленки существенно изменяет величину переходного сопротивления контактов. Ниже приведены значения удельного сопротивления некоторых окислов, часто образующихся на поверхности контактов.  [c.275]

В зоне соприкосновения двух разнородных материалов возникает контактная разность электрических потенциалов. Один металл из этой пары, обладающий менее отрицательным потенциалом по сравнению с другим, является более благородным . Поверхность конструкционного материала может быть неоднородной по химическому составу, по физическим свойствам (местные нагартовки и пр.). Может быть неоднородной и среда-электролит (различная концентрация примесей). Это приводит к образованию макро- и микрогальванических элементов с появлением электрических токов, которые и являются причиной электрохимической коррозии. В системе возникают анодные и катодные участки. Анодные участки обладают более отрицательным электродным потенциалом. Здесь металл переходит в виде гидратированного иона в раствор, оставляя на поверхности электроны (процесс окисления). В области катода притекающие с анодного участка электроны передаются частицам вещества-деполяризатора, например кислорода. В зависимости от того, кинетика какой реакции определяет коррозию, говорят об анодном или катодном контроле скорости коррозии.  [c.22]

Взаимодействие благородных металлов с цианистыми растворами протекает на границе раздела двух фаз — твердой и жидкой. Поэтому процесс цианирования является типичным гетерогенным процессом, и скорость его должна подчиняться закономерностям, общим для всех гетерогенных процессов.  [c.74]

Одним из важнейших факторов, определяющих скорость цианирования, является крупность частиц благородных металлов. Так как удельная поверхность крупных золотин меньше, чем мелких, они растворяются с меньшей скоростью (рис. 45). Полное растворение крупных зерен золота тре-  [c.103]

Соответствующие расчеты показывают, что в ряде случаев скорость dhldx для сплава начиная с некоторого значения hg оказывается меньше, чем для обоих чистых его компонентов, т. е. сплав может окисляться медленнее, чем даже чистый, более благородный (медленнее окисляющийся) его компонент Mt. Таким  [c.95]

Для ряда сплавов было установлено, что менее благородные металлы Me (Са, Сг, Si, Ti, Li и Mn в меди) образуют легко различимые отдельные слои (прилегающие к поверхности сплава), на которых образуется окисел более благородного легируемого металла Mt (закиси меди Си О). Для того чтобы эти промежуточные слои оказывали защитное действие, необходимо выполнение следующих условий-. I) промежуточный слой должен образовывать когерентное (сцепленное) покрытие на металле без образования таких дополнительных каналов диффузии, как трещины или проницаемые межзеренные границы 2) скорости диффузии катионов (Ме"+ и М "+) и анионов в этом слое должны быть малы 3) пов.ерхност-пые окислы не должны образовывать легкоплавких эвтектик.  [c.108]

Хотя между коррозионной стойкостью металлов, которая характеризуется скоростью протекания термодинамически возможных электрохимических коррозионных процессов, и их термодинамическими характеристиками [например, (1 л1Лобр1 и наблюдается некоторое соответствие (щелочные и щелочноземельные металлы наименее устойчивы, а благородные металлы наиболее устойчивы), однако между ними нет простой однозначной зависимости. Металл, нестойкий в одних условиях, в других условиях часто оказывается стойким. Это обусловлено тем, что протекание термодинамически возможного процесса бывает сильно заторможено образующимися вторичными труднорастворимыми продуктами коррозии, пассивными пленками или какими-либо другими факторами. Так, термодинамически весьма неустойчивые Ti, А1 и Mg (см. табл. 28) в ряде сред коррозионностойки благодаря наступлению пассивности.  [c.324]

Различие в скоростях движения нейтрального электролита приводит, как указывалось ранее, к возникновению на поверхности конструкций из неблагородных металлов гальванических аэрационных пар (см. с. 245), а на благородных и полублагород-ных металлах — мотоэлектрического эффекта (см. с. 246).  [c.353]

Эксперимент Уитмэна и Рассела [121 показал, что потеря массы чистого железа и железа в контакте с медью одинакова, но глубина коррозионного поражения увеличивается, когда железо контактирует с более благородным металлом. Этот эксперимент свидетельствует о влиянии гальванической пары на скорость коррозии менее благородного компонента пары. В случае, когда лимитирующим фактором является диффузия деполяризатора, глубину проникновения коррозии р (пропорциональную скорости коррозии) для металла площадью Ла, контактирующего с более благородным металлом площадью А а, можно выразить уравнением  [c.112]


В книге, подготовленной совместно советскими авторами и авторами из ФРГ, обобщены и систематизированы данные о сверхпроводящих магнитных свойствах благородных металлов и их сплавов. Проанализированы закономерности изменения сверхпроводящих свойств в зависимости от чистоты исходных материалов, легирования, обработки давлением и термической обработки, внешних воздействий (облучения, скорости охлаждения и т. д.). Рассмотрены взаимосвязь сверхпроводящих евойств и диаграмм состояния, факторы, обеспечивающие повышение критической температуры и других сверхпроводящих характеристик благородных металлов и сплавов.  [c.25]

Как отмечалось, при растворении кислорода в сплаве в ходе окисления менее благородные компоненты иногда образуют оксид внутри самого сплава. При этом под границей раздела между сплавом и окалиной могут возникнуть оксидные прослойки, субокалина, Такое внутреннее окисление сплава имеет место, когда скорость диффузии кислорода в сплаве протекает существенно быстрее, чем в легирующем компоненте. При выполнении такого условия в сплаве возникает градиент концентрации кислорода, который реагирует с менее благородным компонентом, образуя внутренний оксид.  [c.66]

Барденгеймер и Мюллер [17], исследовавшие диффузию железа из слоев, нанесенных методом пульверизации, указывают, что при одновременном наличии в железе хрома и никеля последний диффундирует значительно быстрее, а хром медленнее, чем если бы эти элементы присутствовали в отдельности. Авторы [17] объясняют это различие в скоростях диффузии присутствием окислов. Если ввести в железо один никель, который благороднее железа, то он не может удержать введенные при пульверизации окислы, и на железе образуется слой окисной пленки, препятствующий диффузии никеля. Если же пользоваться чистым хромом, который имеет большое сродство к кислороду и прочно удерживает окислы, то неокиспенный остаток хрома может диффундировать беспрепятственно. При наличии никеля и хрома последний поглощает кислород, и никель легко диффундирует. Если брать хром и алюминий, то из-за связывания алюминием кислорода облегчается диффузия хрома.  [c.21]

Иногда к аппаратуре предъявляется требование минимального электрического шума. Для этого надо поддерживать низкие скорости вращения и иметь малое и постоянное сопротивления скользящего контакта. В слабошумящих приборах, например в медицинских, материалом щеток служит золото с графитом и родий с графитом с 90% или более благородного метялла. Поверхность контактных щеток покрывают благородным металлом.  [c.434]

Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде при эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо PtO, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной.  [c.204]

Необходимо отметить также, что Ef позволяет судить о возможности протекания реакции, но не дает информации о ее скорости например, в серной кислоте цинк корродирует медленнее железа. В качестве окислителей кроме ионов водорода могут действовать другие компоненты. Это в особенности относится к растворенному кислороду, который деизменно присутствует в водной среде, соприкасающейся с атмосферой. Из табл. 1.2 можно видеть, что растворенный кислород имеет более положительный потенциал, чем ион водорода. Это означает, что благородные металлы Си и Ag не будут корродировать в кислой среде при отсутствии кислорода.  [c.20]

Необходимо покрывать контакт и поверхность вокруг него эащитвы><ш красками или битумом. Поскольку путь тока будет длиннее и сопротивление выше, такая мера приведет к значительному уменьшению скорости коррозии. Окрашивание не должно ограничиваться менее благородными материалами, поскольку локальная коррозия может  [c.40]

Скорость питтинга определяется, главным образом, катодной реакцией вне питтинга, т. е. восстановлением кислорода на поверхностных включениях более благородного материала (Си или А1зРе). Это, в свою очередь, означает, что рост питтинга в глубину замедляется по мере увеличения диаметра. Было найдено, что как в пресной, так и в морской воде глубина питтинга Р пропорциональна корню кубическому из времени t. Р = onst УТ.  [c.125]

При рассмотрении электрохимической коррозии выделяют влияние на скорость растворения внутренних, присущих металлу, факторов и внешних факторов, относящихся к коррозионной среде. К внутренним относятся факторы, связанные с природой металла, его составом, структурой, состоянием поверхности, напряжениями и др. Важнейшей характеристикой природы металла являются его термодинамическая устойчивость и способность к кинетическому торможению анодного растворения (пассивация). Имеется определенная связь между положением металла в Периодической системе элементов Д. И. Менделеева и их коррозионной стойкостью. Для металлических сплавов на основе твердых растворов характерно скачкообразное изменение коррозионных свойств при концентрациях, равных гг/8 атомной доли более благородного компонента (правило Таммана), в связи с образованием плоскостей упорядоченной структуры, обогащенных атомами благородного компонента. Правило Таммана было подтверждено на ряде твердых растворов, а также иа технических пассивирующихся сплавах  [c.23]

Коррозия перлитных сталей в водных средах имеет электрохимическую природу. Одним из основных факторов, определяющих характер и интенсивность коррозии перлитных сталей, является содержание растворенного кислорода в воде. При этом кислород выполняет двойственную роль. С одной стороны, он служит мощным деполяризатором катодных участков коррозионных пар и тем самым ускоряет протекание коррозии при условии, если катодный процесс является контролирующим фактором. С другой стороны, кислород, окисляя металл, повышает стабильность защитных пленок и, сле.а,ователь-но, может даже снижать скорость коррозии. Чем выше концентрация кислорода в растворе, тем больше возможность образования прочных защитных пленок на поверхности стали и более благородным становится электродный потенциал. Участки металла, получающие больше кислорода, выполняют роль катода по отношению к участкам поверхности металла, которые омываются водой с малой концентрацией кислорода, и вследствие этого возникает так называемая макрогальванопара неравномерной аэрации. Это может служить причиной дополнительного разрушения металла теплосилового оборудования,  [c.26]


При цементационном осаждении благородных металлов из цианистых растворов цинковую пыль предварительно освинцовывают путем цементации свинца из азотаокислого или уксуснокислого свинца. Свинцовые соли могут быть поданы непосредственно в цианистые растворы. Свинец, осаждаясь на поверхности цинковых зерен, значительно увеличивает площадь поверхности катодных участков цементационных элементов, увеличивая тем самым скорость цементации. Свинец способствует увели-чегаю скорости осаждения золота еще и потому, что разряд ионов золота на свинце протекает с деполяризацией вследствие образования сплава свинец - золото. В связи с этим свинцовые соли целесообразно вводить в цианйстые растворы в процессе цементации непрерывно. Расход свинцовых солей составляет обычно около 10 % от массы цинковой пыли. По данным работы [ 125], оптимальная концентрация соли свинца в растворе составляет 0,01 %. Положительная роль свинца в растворе в процессе цементации золота цинковой пылью из цианистых растворов, содержащих кремнекислоту, показана в работе [ 126].  [c.51]

Зная механизм растворения благородных металлов в цианистых растворах, можно наметить пути дальнейшего повышения скорости растворения. Очевидно, что если концентрация цианида равна оптимальной или выше нее, то интенсифицировать процесс цианирования можно, лишь повышая концентрацию кислорода в растворе. Так как растворимость кислорода прямо пропорциональна его парциальному давлению над раствором, выш,елачивание при повышенном давлении кислорода должно сопровождаться увеличением оптимальной концентрации цианида и скорости растворения золота. При растворении чистого золота в чистых цианистых растворах это положение полностью подтверждается. Исследования И. Н. Плаксина (1937 г.) показали, что в равной степени оно применимо и в случае цианирования золотосодержащих руд.  [c.101]

Выше указывалось, что скорость растворения благородных металлов сравнительно слабо возрастает с повышением температуры. В то же время, как показали исследования, увеличение температуры выщелачивания сопровождается значительным ускорением побочных реакций взаимодействия цианида с сопутствующими минералами. Помимо этого, при повышенных температурах усиливается гидролиз цианистых растворов, а также их разложение с образованием аммиака и солей муравьиной кислоты N- + 2H20 = = ЫНз + НСОО-  [c.103]

Поэтому ыа практике цианистые растворы перед осаждением из них благородных металлов в большинстве случаев подвергают операции деаэрации (обескислороживанию), само осаждение осуществляется просачиванием обескислороженного раствора через слой дисперсного цинка. Это юбеспечивает достаточно высокую скорость диффузии анионов Au( N) -7к поверхности цинка, и в то же время, благодаря сохранению структуры цементного осадка и отсутствию кислорода, сводится к минимуму возможность обратного растворения золота и сокращается расход цинка. Кроме того, в методе просачивания наиболее богатый по благородным металлам раствор соприкасается с наименее активным (отработанным) цинком, а раствор, все более -обедняющийся по мере просачивания, вступает в контакт со все более свежим осадителем, т. е. осуществляется принцип противотока. В результате дополнительно увеличиваются скорость и глубина осаждения.  [c.169]


Смотреть страницы где упоминается термин Благородные скорость : [c.294]    [c.19]    [c.67]    [c.204]    [c.508]    [c.140]    [c.212]    [c.23]    [c.116]    [c.52]    [c.119]    [c.235]   
Морская коррозия (1983) -- [ c.406 , c.408 ]



ПОИСК



Влияние контакта с более благородными металлами на скорость коррозии цинка в 2 растворе серной кислоты

Газ благородный



© 2025 Mash-xxl.info Реклама на сайте