Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы теории гидродинамических передач

ОСНОВЫ ТЕОРИИ ГИДРОДИНАМИЧЕСКИХ ПЕРЕДАЧ  [c.232]

Основы теории гидродинамических передач  [c.278]

В учебном пособии изложены теоретические основы расчета и проектирования лопастных систем гидродинамических передач. Приведены классификация, элементы теории и особенности рабочего процесса гидродинамических передач, распределение в них Давлений и действующих сил. Рассмотрены основные свойства, характеристики, конструкции и регулирование гидромуфт. Приведены расчеты одноступенчатых, многоступенчатых, комплексных и многотурбинных гидротрансформаторов.  [c.2]


В книге изложены основы теории осевых сил, действующих в гидродинамических муфтах и трансформаторах. Приведены методики расчетов поля скоростей и давлений в рабочих и нерабочих полостях, а также расчета осевых сил гидродинамических передач. Даны результаты экспериментальных исследований, подтверждающие правильность рекомендуемых методов расчета, и конкретные примеры расчета.  [c.2]

Характеристики гидродинамических передач, рассмотренные ранее, не могут быть получены с достаточной точностью теоретическим путем. Поэтому при проектировании механизмов и машин с такими передачами широко используются методы, основой которых являются положения теории подобия лопастных гидромашин. Они позволяют подбирать или определять характеристики и основные геометрические параметры гидродинамических передач, удовлетворяюш ие заданным условиям эксплуатации. При этом проектировании исходным материалом являются экспериментальные данные, полученные для рассматриваемой или подобной гидропередачи на подобном режиме работы.  [c.247]

Основы теории рабочего процесса гидродинамических передач  [c.456]

Несмотря на большое число работ в области контактно-гидродинамической теории, ее разработка еще далека от завершения, а некоторые принципиальные положения не проверены экспериментом, что объясняется сложностью определения параметров смазки в зоне контакта быстровращающихся деталей. По мере развития теоретических и экспериментальных исследований в области контактно-гидродинамической теории она должна стать основой для создания методов расчета деталей машин, таких как зубчатые передачи (с зацеплением эвольвентным и Новикова), червячные передачи, подшипники качения, кулачковые меха-  [c.88]

Но они имеют и некоторые преимущества бесшумны, заменяются без снятия муфт, для больших диаметров обходятся дешевле, в условиях жидкостного трения подшипники скольжения имеют ничтожный износ и потери иа трение в них весьма малы. Поэтому применение их целесообразно в быстроходных передачах, работающих длительное время без перерыва, например п турбинных редукторах. Расчет и конструирование подшипников жидкостного трения производятся на основе гидродинамической теории смазки, излагаемой в специальных главах курса деталей магнии (см., например, [6] или [П I) здесь этот расчет не приводится.  [c.183]


Научной основой теории расчета зубчатых и червячных передач и подшипников качения должна служить контактно-гидродинамическая теория смазки, зародившаяся в СССР. Работы в области этой теории позволили объяснить и численно обосновать ряд важнейших явлений контактной проч-ности деталей машин. Показано существенное повышение контактной прочности oпepeн aющиx поверхностей по сравнению с отстающими при качении со скольжением, связанное с резким изменением напряженного состояния в тонких поверхностных слоях от изменения направления сил трения в связи с пикой у эпюры давлений на выходе из контакта. Установлено численное значение (достигающее 1,5—2) коэффициента повышения несущей способности косозубых передач при значительном перепаде твердости шестерен и колес вследствие повышения контактной прочности опережающих поверхностей головок зубьев.  [c.68]

Конструирование гидромуфты представляет собой сложный, дорогостоящий и многостадийный процесс, сопряженный с экспериментальной доводкой конструкции, и к нему обращаются в тех случаях, когда техническое задание не имеет решения на основе известных конструкций. В основном при создании приводов машин с гидродинамическими передачами используются известные конструкции с уточнением их размеров по заданным техническим параметрам на основе теории подобия. С ее помощью производится также пересчет опытных характеристик гидропгаедач с одной угловой скорости входного вала на другую. Таким образом, применение моделирования существенно уменьшает обьем экспериментальных работ при создании лопастных систем и определении механических свойств гидропередач.  [c.462]

По представлениям 3. Ф. Чуханова Л. 316, 317], основанным на анализе процессов в слое с точки зрения внешней задачи, влияние соседних частиц и их точек соприкосновения проявляется в ранней турбулизации газовой фазы. По-видимому, эта турбулизация охватывает часть свободно омываемой поверхности твердых частиц, но не затрагивает газовую прослойку, непосредственно примыкающую к местам контакта и образующую застойную зону. По данным [Л. 7] коэффициент массо-передачи в широком диапазоне чисел Рейнольдса очень неравномерен по поверхности шариков продуваемого неподвижного слоя. Он резко уменьшается в точках контакта частиц н увеличивается в свободно обдуваемых местах. Аналогичный результат был получен Дентоном [Л. 351] при Re = 5 000 ч-50 ООО. В движущемся слое при прочих равных условиях можно ожидать уменьшения застойных зон на поверхности частиц. Исходя из предположения, что теплообмен в слое является типично внешней задачей, 3. Ф. Чуханов [Л. 316] на основе гидродинамической теории теплообмена показал, что для турбулентного режима  [c.318]

Во втором томе по сравнению с предыдущим изданием произведены следующие изменения в п. 30 внесены новые данные по вопросу сухого трения в обработке д-ра техн. наук В. Л. Вейца и канд. техн. наук Ф. С. Панова сокращена гл. XIV — Тяговые характеристики передач гибкой связью. Гл. X — Основы гидродинамической теории трения и смазки — была критически просмотрена инж. Г. М. Коганом как специалистом, занимающимся этими вопросами в промышленности.  [c.4]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]


В данной работе для исследования неравновесных эффектов и определения переносных свойств в многоатомных газах типа СОа использовался аппарат кинетической теории многотемпературной релаксации на основе обобщенного уравнения Больцмана с учетом поступательных, вращательных и колебательных степеней свободы, развитый ранее для двухатомных газов Ц]. Преимуществом такого подхода является то, что релаксационные уравнения для заселенностей колебательных уровней во всех приближениях получаются вместе с гидродинамической системой, структура которой зависит только от принятых предположений о расположении по порядку величины соответствующих времен или длин релаксации. Предполагалось, что поступательные и вращательные степени свободы релаксируют быстро, а колебательные — медленно, но с различными скоростями для разных мод колебаний, причем передача колебательной энергии в процессе соударений происходила по законам гармонического осциллятора.  [c.105]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]

Профессор Н. П. Петров является осиовоноложнпком гидродинамической теории смазки (теории работы масляного слоя между трущимися поверхностями). В настоящее время эта теория является не только основой расчета подшипников скольжения, но распространяется на зубчатые и червячные передачи, роликовые подшипники и другие детали, работающие со смазкой.  [c.9]


Смотреть страницы где упоминается термин Основы теории гидродинамических передач : [c.207]   
Смотреть главы в:

Гидравлика и гидропривод  -> Основы теории гидродинамических передач

Гидравлика и гидропривод  -> Основы теории гидродинамических передач

Гидравлика и гидропривод горных машин  -> Основы теории гидродинамических передач



ПОИСК



Гидродинамические основы теории

Да гидродинамическое

Основы теории

Основы теории рабочего процесса гидродинамических передач

Передача, гидродинамическая



© 2025 Mash-xxl.info Реклама на сайте